first commit
This commit is contained in:
commit
5893b00dd2
1669 changed files with 1982740 additions and 0 deletions
8
libraries/bsec2/examples/x8_board_examples/Readme.md
Normal file
8
libraries/bsec2/examples/x8_board_examples/Readme.md
Normal file
|
|
@ -0,0 +1,8 @@
|
|||
basic_config_state.ino example supports regression as well as classification outputs.
|
||||
However BSEC supports only one mode at any given point of time.
|
||||
Ensure to define the output mode required in the example code before compilation.
|
||||
|
||||
Set the OUTPUT_MODE macro to CLASSIFICATION for the classification output of the BSEC algorithm (default).
|
||||
#define OUTPUT_MODE CLASSIFICATION
|
||||
Set the OUTPUT_MODE macro to REGRESSION for the regression output of the BSEC algorithm.
|
||||
#define OUTPUT_MODE REGRESSION
|
||||
242
libraries/bsec2/examples/x8_board_examples/basic/basic.ino
Normal file
242
libraries/bsec2/examples/x8_board_examples/basic/basic.ino
Normal file
|
|
@ -0,0 +1,242 @@
|
|||
/**
|
||||
Copyright (C) 2021 Bosch Sensortec GmbH
|
||||
|
||||
SPDX-License-Identifier: BSD-3-Clause
|
||||
|
||||
*/
|
||||
|
||||
/* The new sensor needs to be conditioned before the example can work reliably. You may run this
|
||||
example for 24hrs to let the sensor stabilize.
|
||||
*/
|
||||
|
||||
/**
|
||||
basic.ino sketch :
|
||||
This is an example for illustrating the BSEC virtual outputs using BME688 Development Kit,
|
||||
which has been designed to work with Adafruit ESP32 Feather Board
|
||||
For more information visit :
|
||||
https://www.bosch-sensortec.com/software-tools/software/bme688-software/
|
||||
*/
|
||||
|
||||
#include <bsec2.h>
|
||||
#include <commMux\commMux.h>
|
||||
|
||||
/* Macros used */
|
||||
/* Number of sensors to operate*/
|
||||
#define NUM_OF_SENS 8
|
||||
#define PANIC_LED LED_BUILTIN
|
||||
#define ERROR_DUR 1000
|
||||
|
||||
#define SAMPLE_RATE BSEC_SAMPLE_RATE_ULP
|
||||
|
||||
/* Helper functions declarations */
|
||||
/**
|
||||
@brief : This function toggles the led when a fault was detected
|
||||
*/
|
||||
void errLeds(void);
|
||||
|
||||
/**
|
||||
@brief : This function checks the BSEC status, prints the respective error code. Halts in case of error
|
||||
@param[in] bsec : Bsec2 class object
|
||||
*/
|
||||
void checkBsecStatus(Bsec2 bsec);
|
||||
|
||||
/**
|
||||
@brief : This function is called by the BSEC library when a new output is available
|
||||
@param[in] input : BME68X sensor data before processing
|
||||
@param[in] outputs : Processed BSEC BSEC output data
|
||||
@param[in] bsec : Instance of BSEC2 calling the callback
|
||||
*/
|
||||
void newDataCallback(const bme68xData data, const bsecOutputs outputs, Bsec2 bsec);
|
||||
|
||||
/* Create an array of objects of the class Bsec2 */
|
||||
Bsec2 envSensor[NUM_OF_SENS];
|
||||
comm_mux communicationSetup[NUM_OF_SENS];
|
||||
uint8_t bsecMemBlock[NUM_OF_SENS][BSEC_INSTANCE_SIZE];
|
||||
uint8_t sensor = 0;
|
||||
|
||||
/* Entry point for the example */
|
||||
void setup(void)
|
||||
{
|
||||
/* Desired subscription list of BSEC2 outputs */
|
||||
bsecSensor sensorList[] = {
|
||||
BSEC_OUTPUT_IAQ,
|
||||
BSEC_OUTPUT_RAW_TEMPERATURE,
|
||||
BSEC_OUTPUT_RAW_PRESSURE,
|
||||
BSEC_OUTPUT_RAW_HUMIDITY,
|
||||
BSEC_OUTPUT_RAW_GAS,
|
||||
BSEC_OUTPUT_STABILIZATION_STATUS,
|
||||
BSEC_OUTPUT_RUN_IN_STATUS,
|
||||
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE,
|
||||
BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY,
|
||||
BSEC_OUTPUT_STATIC_IAQ,
|
||||
BSEC_OUTPUT_CO2_EQUIVALENT,
|
||||
BSEC_OUTPUT_BREATH_VOC_EQUIVALENT,
|
||||
BSEC_OUTPUT_GAS_PERCENTAGE,
|
||||
BSEC_OUTPUT_COMPENSATED_GAS
|
||||
};
|
||||
|
||||
/* Initialize the communication interfaces */
|
||||
Serial.begin(115200);
|
||||
comm_mux_begin(Wire, SPI);
|
||||
pinMode(PANIC_LED, OUTPUT);
|
||||
delay(100);
|
||||
/* Valid for boards with USB-COM. Wait until the port is open */
|
||||
while (!Serial) delay(10);
|
||||
|
||||
for (uint8_t i = 0; i < NUM_OF_SENS; i++)
|
||||
{
|
||||
/* Sets the Communication interface for the sensors */
|
||||
communicationSetup[i] = comm_mux_set_config(Wire, SPI, i, communicationSetup[i]);
|
||||
|
||||
/* Assigning a chunk of memory block to the bsecInstance */
|
||||
envSensor[i].allocateMemory(bsecMemBlock[i]);
|
||||
|
||||
/* Initialize the library and interfaces */
|
||||
if (!envSensor[i].begin(BME68X_SPI_INTF, comm_mux_read, comm_mux_write, comm_mux_delay, &communicationSetup[i]))
|
||||
{
|
||||
checkBsecStatus (envSensor[i]);
|
||||
}
|
||||
|
||||
/*
|
||||
* The default offset provided has been determined by testing the sensor in LP and ULP mode on application board 3.0
|
||||
* Please update the offset value after testing this on your product
|
||||
*/
|
||||
if (SAMPLE_RATE == BSEC_SAMPLE_RATE_ULP)
|
||||
{
|
||||
envSensor[i].setTemperatureOffset(TEMP_OFFSET_ULP);
|
||||
}
|
||||
else if (SAMPLE_RATE == BSEC_SAMPLE_RATE_LP)
|
||||
{
|
||||
envSensor[i].setTemperatureOffset(TEMP_OFFSET_LP);
|
||||
}
|
||||
|
||||
/* Subscribe to the desired BSEC2 outputs */
|
||||
if (!envSensor[i].updateSubscription(sensorList, ARRAY_LEN(sensorList), SAMPLE_RATE))
|
||||
{
|
||||
checkBsecStatus (envSensor[i]);
|
||||
}
|
||||
|
||||
/* Whenever new data is available call the newDataCallback function */
|
||||
envSensor[i].attachCallback(newDataCallback);
|
||||
}
|
||||
|
||||
Serial.println("BSEC library version " + \
|
||||
String(envSensor[0].version.major) + "." \
|
||||
+ String(envSensor[0].version.minor) + "." \
|
||||
+ String(envSensor[0].version.major_bugfix) + "." \
|
||||
+ String(envSensor[0].version.minor_bugfix));
|
||||
}
|
||||
|
||||
/* Function that is looped forever */
|
||||
void loop(void)
|
||||
{
|
||||
/* Call the run function often so that the library can
|
||||
check if it is time to read new data from the sensor
|
||||
and process it.
|
||||
*/
|
||||
for (sensor = 0; sensor < NUM_OF_SENS; sensor++)
|
||||
{
|
||||
if (!envSensor[sensor].run())
|
||||
{
|
||||
checkBsecStatus(envSensor[sensor]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void errLeds(void)
|
||||
{
|
||||
while (1)
|
||||
{
|
||||
digitalWrite(PANIC_LED, HIGH);
|
||||
delay(ERROR_DUR);
|
||||
digitalWrite(PANIC_LED, LOW);
|
||||
delay(ERROR_DUR);
|
||||
}
|
||||
}
|
||||
|
||||
void newDataCallback(const bme68xData data, const bsecOutputs outputs, Bsec2 bsec)
|
||||
{
|
||||
if (!outputs.nOutputs)
|
||||
{
|
||||
return;
|
||||
}
|
||||
|
||||
Serial.println("BSEC outputs:\n\tSensor num = " + String(sensor));
|
||||
Serial.println("\tTime stamp = " + String((int) (outputs.output[0].time_stamp / INT64_C(1000000))));
|
||||
for (uint8_t i = 0; i < outputs.nOutputs; i++)
|
||||
{
|
||||
const bsecData output = outputs.output[i];
|
||||
switch (output.sensor_id)
|
||||
{
|
||||
case BSEC_OUTPUT_IAQ:
|
||||
Serial.println("\tIAQ = " + String(output.signal));
|
||||
Serial.println("\tIAQ accuracy = " + String((int) output.accuracy));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_TEMPERATURE:
|
||||
Serial.println("\tTemperature = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_PRESSURE:
|
||||
Serial.println("\tPressure = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_HUMIDITY:
|
||||
Serial.println("\tHumidity = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_GAS:
|
||||
Serial.println("\tGas resistance = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_STABILIZATION_STATUS:
|
||||
Serial.println("\tStabilization status = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RUN_IN_STATUS:
|
||||
Serial.println("\tRun in status = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
|
||||
Serial.println("\tCompensated temperature = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
|
||||
Serial.println("\tCompensated humidity = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_STATIC_IAQ:
|
||||
Serial.println("\tStatic IAQ = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_CO2_EQUIVALENT:
|
||||
Serial.println("\tCO2 Equivalent = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_BREATH_VOC_EQUIVALENT:
|
||||
Serial.println("\tbVOC equivalent = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_GAS_PERCENTAGE:
|
||||
Serial.println("\tGas percentage = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_COMPENSATED_GAS:
|
||||
Serial.println("\tCompensated gas = " + String(output.signal));
|
||||
break;
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void checkBsecStatus(Bsec2 bsec)
|
||||
{
|
||||
if (bsec.status < BSEC_OK)
|
||||
{
|
||||
Serial.println("BSEC error code : " + String(bsec.status));
|
||||
errLeds(); /* Halt in case of failure */
|
||||
}
|
||||
else if (bsec.status > BSEC_OK)
|
||||
{
|
||||
Serial.println("BSEC warning code : " + String(bsec.status));
|
||||
}
|
||||
|
||||
if (bsec.sensor.status < BME68X_OK)
|
||||
{
|
||||
Serial.println("BME68X error code : " + String(bsec.sensor.status));
|
||||
errLeds(); /* Halt in case of failure */
|
||||
}
|
||||
else if (bsec.sensor.status > BME68X_OK)
|
||||
{
|
||||
Serial.println("BME68X warning code : " + String(bsec.sensor.status));
|
||||
}
|
||||
}
|
||||
|
|
@ -0,0 +1,375 @@
|
|||
/**
|
||||
* Copyright (C) 2021 Bosch Sensortec GmbH
|
||||
*
|
||||
* SPDX-License-Identifier: BSD-3-Clause
|
||||
*
|
||||
*/
|
||||
|
||||
/* The new sensor needs to be conditioned before the example can work reliably. You may run this
|
||||
* example for 24hrs to let the sensor stabilize.
|
||||
*/
|
||||
|
||||
/**
|
||||
* basic_config_state.ino sketch :
|
||||
* This is an example for integration of BSEC2x library in BME688 development kit,
|
||||
* which has been designed to work with Adafruit ESP32 Feather Board
|
||||
* For more information visit :
|
||||
* https://www.bosch-sensortec.com/software-tools/software/bme688-software/
|
||||
*
|
||||
* For quick integration test, example code can be used with configuration file under folder
|
||||
* Bosch_BSEC2_Library/src/config/FieldAir_HandSanitizer (Configuration file added as simple
|
||||
* code example for integration but not optimized on classification performance)
|
||||
* Config string for H2S and NonH2S target classes is also kept for reference (Suitable for
|
||||
* lab-based characterization of the sensor)
|
||||
*/
|
||||
|
||||
#include <EEPROM.h>
|
||||
#include <bsec2.h>
|
||||
#include <commMux\commMux.h>
|
||||
/* For two class classification use configuration under config/FieldAir_HandSanitizer */
|
||||
#define CLASSIFICATION 1
|
||||
#define REGRESSION 2
|
||||
|
||||
#define COMPLETED 1
|
||||
|
||||
/* Note :
|
||||
For the classification output from BSEC algorithm set OUTPUT_MODE macro to CLASSIFICATION.
|
||||
For the regression output from BSEC algorithm set OUTPUT_MODE macro to REGRESSION.
|
||||
*/
|
||||
#define OUTPUT_MODE CLASSIFICATION
|
||||
|
||||
#if (OUTPUT_MODE == CLASSIFICATION)
|
||||
const uint8_t bsec_config[] = {
|
||||
#include "config/FieldAir_HandSanitizer/bsec_selectivity.txt"
|
||||
};
|
||||
#elif (OUTPUT_MODE == REGRESSION)
|
||||
const uint8_t bsec_config[] = {
|
||||
#include "config/bme688/bme688_reg_18v_300s_4d/bsec_selectivity.txt"
|
||||
};
|
||||
#endif
|
||||
|
||||
/* Macros used */
|
||||
#define STATE_SAVE_PERIOD UINT32_C(360 * 60 * 1000) /* 360 minutes - 4 times a day */
|
||||
/* Number of sensors to operate*/
|
||||
#define NUM_OF_SENS 8
|
||||
#define PANIC_LED LED_BUILTIN
|
||||
#define ERROR_DUR 1000
|
||||
|
||||
/* Helper functions declarations */
|
||||
/**
|
||||
* @brief : This function toggles the led continuously with one second delay
|
||||
*/
|
||||
void errLeds(void);
|
||||
|
||||
/**
|
||||
* @brief : This function checks the BSEC status, prints the respective error code. Halts in case of error
|
||||
* @param[in] bsec : Bsec2 class object
|
||||
*/
|
||||
void checkBsecStatus(Bsec2 bsec);
|
||||
|
||||
/**
|
||||
* @brief : This function updates/saves BSEC state
|
||||
* @param[in] bsec : Bsec2 class object
|
||||
*/
|
||||
void updateBsecState(Bsec2 bsec);
|
||||
|
||||
/**
|
||||
* @brief : This function is called by the BSEC library when a new output is available
|
||||
* @param[in] input : BME68X sensor data before processing
|
||||
* @param[in] outputs : Processed BSEC BSEC output data
|
||||
* @param[in] bsec : Instance of BSEC2 calling the callback
|
||||
*/
|
||||
void newDataCallback(const bme68xData data, const bsecOutputs outputs, Bsec2 bsec);
|
||||
|
||||
/**
|
||||
* @brief : This function retrieves the existing state
|
||||
* @param : Bsec2 class object
|
||||
*/
|
||||
bool loadState(Bsec2 bsec);
|
||||
|
||||
/**
|
||||
* @brief : This function writes the state into EEPROM
|
||||
* @param : Bsec2 class object
|
||||
*/
|
||||
bool saveState(Bsec2 bsec);
|
||||
|
||||
/* Create an object of the class Bsec2 */
|
||||
Bsec2 envSensor[NUM_OF_SENS];
|
||||
comm_mux commConfig[NUM_OF_SENS];
|
||||
uint8_t bsecMemBlock[NUM_OF_SENS][BSEC_INSTANCE_SIZE];
|
||||
uint8_t sensor = 0;
|
||||
static uint8_t bsecState[BSEC_MAX_STATE_BLOB_SIZE];
|
||||
/* Gas estimate names will be according to the configuration classes used */
|
||||
const String gasName[] = { "Field Air", "Hand sanitizer", "Undefined 3", "Undefined 4"};
|
||||
|
||||
/* Entry point for the example */
|
||||
void setup(void)
|
||||
{
|
||||
|
||||
#if (OUTPUT_MODE == CLASSIFICATION)
|
||||
/* Desired subscription list of BSEC2 Classification outputs */
|
||||
bsecSensor sensorList[] = {
|
||||
BSEC_OUTPUT_RAW_TEMPERATURE,
|
||||
BSEC_OUTPUT_RAW_PRESSURE,
|
||||
BSEC_OUTPUT_RAW_HUMIDITY,
|
||||
BSEC_OUTPUT_RAW_GAS,
|
||||
BSEC_OUTPUT_RAW_GAS_INDEX,
|
||||
BSEC_OUTPUT_GAS_ESTIMATE_1,
|
||||
BSEC_OUTPUT_GAS_ESTIMATE_2,
|
||||
BSEC_OUTPUT_GAS_ESTIMATE_3,
|
||||
BSEC_OUTPUT_GAS_ESTIMATE_4
|
||||
};
|
||||
#elif (OUTPUT_MODE == REGRESSION)
|
||||
/* Desired subscription list of BSEC2 Regression outputs */
|
||||
bsecSensor sensorList[] = {
|
||||
BSEC_OUTPUT_RAW_TEMPERATURE,
|
||||
BSEC_OUTPUT_RAW_PRESSURE,
|
||||
BSEC_OUTPUT_RAW_HUMIDITY,
|
||||
BSEC_OUTPUT_RAW_GAS,
|
||||
BSEC_OUTPUT_RAW_GAS_INDEX,
|
||||
BSEC_OUTPUT_REGRESSION_ESTIMATE_1,
|
||||
BSEC_OUTPUT_REGRESSION_ESTIMATE_2,
|
||||
BSEC_OUTPUT_REGRESSION_ESTIMATE_3,
|
||||
BSEC_OUTPUT_REGRESSION_ESTIMATE_4
|
||||
};
|
||||
#endif
|
||||
|
||||
Serial.begin(115200);
|
||||
EEPROM.begin(BSEC_MAX_STATE_BLOB_SIZE + 1);
|
||||
/* Initiate SPI communication */
|
||||
comm_mux_begin(Wire, SPI);
|
||||
pinMode(PANIC_LED, OUTPUT);
|
||||
delay(100);
|
||||
/* Valid for boards with USB-COM. Wait until the port is open */
|
||||
while (!Serial) delay(10);
|
||||
|
||||
uint8_t state_write_otp = 0;
|
||||
|
||||
for (uint8_t i = 0; i < NUM_OF_SENS; i++)
|
||||
{
|
||||
/* Sets the Communication interface for the given sensor */
|
||||
commConfig[i] = comm_mux_set_config(Wire, SPI, i, commConfig[i]);
|
||||
|
||||
/* Assigning a chunk of memory block to the bsecInstance */
|
||||
envSensor[i].allocateMemory(bsecMemBlock[i]);
|
||||
|
||||
/* Initialize the library and interfaces */
|
||||
if (!envSensor[i].begin(BME68X_SPI_INTF, comm_mux_read, comm_mux_write, comm_mux_delay, &commConfig[i]))
|
||||
{
|
||||
checkBsecStatus (envSensor[i]);
|
||||
}
|
||||
|
||||
/* Load the configuration string that stores information on how to classify the detected gas */
|
||||
if (!envSensor[i].setConfig(bsec_config))
|
||||
{
|
||||
checkBsecStatus (envSensor[i]);
|
||||
}
|
||||
|
||||
/* Copy state from the EEPROM to the algorithm */
|
||||
if (state_write_otp == 0)
|
||||
{
|
||||
if (!loadState(envSensor[i]))
|
||||
{
|
||||
checkBsecStatus (envSensor[i]);
|
||||
}
|
||||
state_write_otp = COMPLETED;
|
||||
}
|
||||
|
||||
/* Subscribe for the desired BSEC2 outputs */
|
||||
if (!envSensor[i].updateSubscription(sensorList, ARRAY_LEN(sensorList), BSEC_SAMPLE_RATE_SCAN))
|
||||
{
|
||||
checkBsecStatus (envSensor[i]);
|
||||
}
|
||||
|
||||
/* Whenever new data is available call the newDataCallback function */
|
||||
envSensor[i].attachCallback(newDataCallback);
|
||||
|
||||
updateBsecState(envSensor[i]);
|
||||
}
|
||||
|
||||
Serial.println("\nBSEC library version " + \
|
||||
String(envSensor[0].version.major) + "." \
|
||||
+ String(envSensor[0].version.minor) + "." \
|
||||
+ String(envSensor[0].version.major_bugfix) + "." \
|
||||
+ String(envSensor[0].version.minor_bugfix));
|
||||
}
|
||||
|
||||
/* Function that is looped forever */
|
||||
void loop(void)
|
||||
{
|
||||
/* Call the run function often so that the library can
|
||||
* check if it is time to read new data from the sensor
|
||||
* and process it.
|
||||
*/
|
||||
for (sensor = 0; sensor < NUM_OF_SENS; sensor++)
|
||||
{
|
||||
if (!envSensor[sensor].run())
|
||||
{
|
||||
checkBsecStatus(envSensor[sensor]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void errLeds(void)
|
||||
{
|
||||
while(1)
|
||||
{
|
||||
digitalWrite(PANIC_LED, HIGH);
|
||||
delay(ERROR_DUR);
|
||||
digitalWrite(PANIC_LED, LOW);
|
||||
delay(ERROR_DUR);
|
||||
}
|
||||
}
|
||||
|
||||
void updateBsecState(Bsec2 bsec)
|
||||
{
|
||||
static uint16_t stateUpdateCounter = 0;
|
||||
bool update = false;
|
||||
|
||||
if (!stateUpdateCounter || (stateUpdateCounter * STATE_SAVE_PERIOD) < millis())
|
||||
{
|
||||
/* Update every STATE_SAVE_PERIOD minutes */
|
||||
update = true;
|
||||
stateUpdateCounter++;
|
||||
}
|
||||
|
||||
if (update && !saveState(bsec))
|
||||
checkBsecStatus(bsec);
|
||||
}
|
||||
|
||||
void newDataCallback(const bme68xData data, const bsecOutputs outputs, Bsec2 bsec)
|
||||
{
|
||||
if (!outputs.nOutputs)
|
||||
return;
|
||||
|
||||
Serial.println("BSEC outputs:\n\tSensor num = " + String(sensor));
|
||||
Serial.println("\tTime stamp = " + String((int) (outputs.output[0].time_stamp / INT64_C(1000000))));
|
||||
|
||||
int index = 0;
|
||||
|
||||
for (uint8_t i = 0; i < outputs.nOutputs; i++)
|
||||
{
|
||||
const bsecData output = outputs.output[i];
|
||||
switch (output.sensor_id)
|
||||
{
|
||||
case BSEC_OUTPUT_RAW_TEMPERATURE:
|
||||
Serial.println("\tTemperature = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_PRESSURE:
|
||||
Serial.println("\tPressure = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_HUMIDITY:
|
||||
Serial.println("\tHumidity = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_GAS:
|
||||
Serial.println("\tGas resistance = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_RAW_GAS_INDEX:
|
||||
Serial.println("\tGas index = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_TEMPERATURE:
|
||||
Serial.println("\tCompensated temperature = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_SENSOR_HEAT_COMPENSATED_HUMIDITY:
|
||||
Serial.println("\tCompensated humidity = " + String(output.signal));
|
||||
break;
|
||||
case BSEC_OUTPUT_GAS_ESTIMATE_1:
|
||||
case BSEC_OUTPUT_GAS_ESTIMATE_2:
|
||||
case BSEC_OUTPUT_GAS_ESTIMATE_3:
|
||||
case BSEC_OUTPUT_GAS_ESTIMATE_4:
|
||||
index = (output.sensor_id - BSEC_OUTPUT_GAS_ESTIMATE_1);
|
||||
if (index == 0) // The four classes are updated from BSEC with same accuracy, thus printing is done just once.
|
||||
{
|
||||
Serial.println("\tAccuracy = " + String((int) output.accuracy));
|
||||
}
|
||||
Serial.println(("\tClass " + String(index + 1) + " probability = ") + String(output.signal * 100) + "%");
|
||||
break;
|
||||
case BSEC_OUTPUT_REGRESSION_ESTIMATE_1:
|
||||
case BSEC_OUTPUT_REGRESSION_ESTIMATE_2:
|
||||
case BSEC_OUTPUT_REGRESSION_ESTIMATE_3:
|
||||
case BSEC_OUTPUT_REGRESSION_ESTIMATE_4:
|
||||
index = (output.sensor_id - BSEC_OUTPUT_REGRESSION_ESTIMATE_1);
|
||||
if (index == 0) // The four targets are updated from BSEC with same accuracy, thus printing is done just once.
|
||||
{
|
||||
Serial.println("\tAccuracy = " + String(output.accuracy));
|
||||
}
|
||||
Serial.println("\tTarget " + String(index + 1) + " = " + String(output.signal * 100));
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void checkBsecStatus(Bsec2 bsec)
|
||||
{
|
||||
if (bsec.status < BSEC_OK)
|
||||
{
|
||||
Serial.println("BSEC error code : " + String(bsec.status));
|
||||
errLeds(); /* Halt in case of failure */
|
||||
} else if (bsec.status > BSEC_OK)
|
||||
{
|
||||
Serial.println("BSEC warning code : " + String(bsec.status));
|
||||
}
|
||||
|
||||
if (bsec.sensor.status < BME68X_OK)
|
||||
{
|
||||
Serial.println("BME68X error code : " + String(bsec.sensor.status));
|
||||
errLeds(); /* Halt in case of failure */
|
||||
} else if (bsec.sensor.status > BME68X_OK)
|
||||
{
|
||||
Serial.println("BME68X warning code : " + String(bsec.sensor.status));
|
||||
}
|
||||
}
|
||||
|
||||
bool loadState(Bsec2 bsec)
|
||||
{
|
||||
|
||||
if (EEPROM.read(0) == BSEC_MAX_STATE_BLOB_SIZE)
|
||||
{
|
||||
/* Existing state in EEPROM */
|
||||
Serial.println("Reading state from EEPROM");
|
||||
Serial.print("State file: ");
|
||||
for (uint8_t i = 0; i < BSEC_MAX_STATE_BLOB_SIZE; i++)
|
||||
{
|
||||
bsecState[i] = EEPROM.read(i + 1);
|
||||
Serial.print(String(bsecState[i], HEX) + ", ");
|
||||
}
|
||||
Serial.println();
|
||||
|
||||
if (!bsec.setState(bsecState))
|
||||
return false;
|
||||
} else
|
||||
{
|
||||
/* Erase the EEPROM with zeroes */
|
||||
Serial.println("Erasing EEPROM");
|
||||
|
||||
for (uint8_t i = 0; i <= BSEC_MAX_STATE_BLOB_SIZE; i++)
|
||||
EEPROM.write(i, 0);
|
||||
|
||||
EEPROM.commit();
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
bool saveState(Bsec2 bsec)
|
||||
{
|
||||
if (!bsec.getState(bsecState))
|
||||
return false;
|
||||
|
||||
Serial.println("Writing state to EEPROM");
|
||||
Serial.print("State file: ");
|
||||
|
||||
for (uint8_t i = 0; i < BSEC_MAX_STATE_BLOB_SIZE; i++)
|
||||
{
|
||||
EEPROM.write(i + 1, bsecState[i]);
|
||||
Serial.print(String(bsecState[i], HEX) + ", ");
|
||||
}
|
||||
Serial.println();
|
||||
|
||||
EEPROM.write(0, BSEC_MAX_STATE_BLOB_SIZE);
|
||||
EEPROM.commit();
|
||||
|
||||
return true;
|
||||
}
|
||||
Loading…
Add table
Add a link
Reference in a new issue