sTodo-m5paper-client/libraries/M5UnitUnified/examples/demo/MultipleUnits/main/MultipleUnits.cpp
2025-06-30 20:47:33 +02:00

432 lines
14 KiB
C++

/*
* SPDX-FileCopyrightText: 2024 M5Stack Technology CO LTD
*
* SPDX-License-Identifier: MIT
*/
/*
Demonstration of using M5UnitUnified with multiple units
Required Devices:
- Any Core with LCD
- UnitPaHub2
- UnitVmeter : 0
- UnitTVOC : 1
- UnitENV3 : 2
- UnitHEART : 3
*/
#include <M5Unified.h>
#include <M5UnitUnified.h>
#include <M5UnitUnifiedHUB.h>
#include <M5UnitUnifiedENV.h> // ENVIII,TVOC
#include <M5UnitUnifiedMETER.h> // Vmeter
#include <M5UnitUnifiedHEART.h> // HEART
#include <Wire.h>
#if __has_include(<esp_idf_version.h>)
#include <esp_idf_version.h>
#else // esp_idf_version.h has been introduced in Arduino 1.0.5 (ESP-IDF3.3)
#define ESP_IDF_VERSION_VAL(major, minor, patch) ((major << 16) | (minor << 8) | (patch))
#define ESP_IDF_VERSION ESP_IDF_VERSION_VAL(3, 2, 0)
#endif
#include "../src/ui/ui_UnitVmeter.hpp"
#include "../src/ui/ui_UnitTVOC.hpp"
#include "../src/ui/ui_UnitENV3.hpp"
#include "../src/ui/ui_UnitHEART.hpp"
using namespace m5::unit;
namespace {
LGFX_Sprite strips[2];
constexpr uint32_t SPLIT_NUM{4};
int32_t strip_height{};
auto& lcd = M5.Display;
UnitUnified Units;
UnitPaHub2 unitPaHub{0x71}; // NEED changed register to 0x71. see also https://docs.m5stack.com/en/unit/pahub2
UnitVmeter unitVmeter; // channel 0
UnitTVOC unitTVOC; // channel 1
UnitENV3 unitENV3; // channel 2
UnitHEART unitHeart; // channel 3
auto& unitSHT30 = unitENV3.sht30; // alias
auto& unitQMP6988 = unitENV3.qmp6988; // alias
UnitVmeterSmallUI vmeterSmallUI(&lcd);
UnitTVOCSmallUI tvocSmallUI(&lcd);
UnitHEARTSmallUI heartSmallUI(&lcd);
UnitENV3SmallUI env3SmallUI(&lcd);
volatile SemaphoreHandle_t _updateLock{};
constexpr TickType_t ui_take_wait{0};
void prepare()
{
// Each unit settings
{
auto ccfg = unitVmeter.component_config();
ccfg.self_update = true; // Don't update in UnitUnified::update, update explicitly myself.
ccfg.stored_size = 64; // Number of elements in the circular buffer that the instance has.
unitVmeter.component_config(ccfg);
// Setup fro begin
auto cfg = unitVmeter.config();
// 12 ms is used by TVOC, so frequency is reduced
cfg.rate = m5::unit::ads111x::Sampling::Rate64; // 64mps
unitVmeter.config(cfg);
}
{
// Setup fro begin
auto cfg = unitTVOC.config();
cfg.interval = 1000 / 10; // 10 mps
unitTVOC.config(cfg);
auto ccfg = unitTVOC.component_config();
ccfg.self_update = true; // Don't update in UnitUnified::update, update explicitly myself.
ccfg.stored_size = 1000 / cfg.interval; // Number of elements in the circular buffer that the instance has
unitTVOC.component_config(ccfg);
}
{
auto ccfg = unitSHT30.component_config();
ccfg.self_update = true;
ccfg.stored_size = 10; // Number of elements in the circular buffer that the instance has
unitSHT30.component_config(ccfg);
// Setup fro begin
auto cfg = unitSHT30.config();
cfg.mps = m5::unit::sht30::MPS::Ten; // 10 mps
unitSHT30.config(cfg);
}
{
auto ccfg = unitQMP6988.component_config();
ccfg.self_update = true;
ccfg.stored_size = 16; // Number of elements in the circular buffer that the instance has
unitQMP6988.component_config(ccfg);
// Setup fro begin
auto cfg = unitQMP6988.config();
cfg.standby =
m5::unit::qmp6988::Standby::Time50ms; // about 16 mps (Calculated from other parameters and this value
unitQMP6988.config(cfg);
}
{
auto ccfg = unitHeart.component_config();
ccfg.self_update = true; // Don't update in UnitUnified::update, update explicitly myself.
ccfg.stored_size = 160; // Number of elements in the circular buffer that the instance has
unitHeart.component_config(ccfg);
}
// UI
heartSmallUI.construct();
tvocSmallUI.construct();
vmeterSmallUI.construct();
env3SmallUI.construct();
heartSmallUI.monitor().setSamplingRate(m5::unit::max30100::getSamplingRate(unitHeart.config().sampling_rate));
}
// task for Vmeter
void update_vmeter(void*)
{
static uint32_t fcnt{}, mps{}, mcnt{};
static unsigned long start_at{};
for (;;) {
// Exclusive control of TwoWire access and unit updates
xSemaphoreTake(_updateLock, portMAX_DELAY);
unitVmeter.update();
xSemaphoreGive(_updateLock);
// If measurement data is available, acquire it and pass it to the UI.
// If the UI is locked, skip and continue.
if (!unitVmeter.empty()) {
if (vmeterSmallUI.lock(ui_take_wait)) {
mcnt += unitVmeter.available();
while (unitVmeter.available()) {
vmeterSmallUI.push_back(unitVmeter.voltage()); // Gets the oldest data
unitVmeter.discard(); // Discard oldest one
}
vmeterSmallUI.unlock();
}
}
// std::this_thread::yield();
m5::utility::delay(1);
++fcnt;
auto now = m5::utility::millis();
if (now >= start_at + 1000) {
mps = fcnt;
M5_LOGD("Vmeter:%u (%u)", mps, mcnt);
fcnt = mcnt = 0;
start_at = now;
}
}
}
// Task for TVOC
void update_tvoc(void*)
{
static uint32_t fcnt{}, mps{}, mcnt{};
static unsigned long start_at{};
// Waiting for SGP30 to start periodic measurement (15sec)
for (;;) {
if (unitTVOC.canMeasurePeriodic()) {
break;
}
// Exclusive control of TwoWire access and unit updates
xSemaphoreTake(_updateLock, portMAX_DELAY);
unitTVOC.update();
xSemaphoreGive(_updateLock);
m5::utility::delay(1000);
}
for (;;) {
// Exclusive control of TwoWire access and unit updates
xSemaphoreTake(_updateLock, portMAX_DELAY);
// TVOC measuement needs 12ms for read...
unitTVOC.update();
xSemaphoreGive(_updateLock);
// If measurement data is available, acquire it and pass it to the UI.
// If the UI is locked, skip and continue.
if (!unitTVOC.empty()) {
if (tvocSmallUI.lock(ui_take_wait)) {
mcnt += unitTVOC.available();
while (unitTVOC.available()) {
tvocSmallUI.push_back(unitTVOC.co2eq(), unitTVOC.tvoc()); // Gets the oldest data
unitTVOC.discard(); // Discard oldest one
}
tvocSmallUI.unlock();
}
}
// std::this_thread::yield();
m5::utility::delay(1);
++fcnt;
auto now = m5::utility::millis();
if (now >= start_at + 1000) {
mps = fcnt;
M5_LOGD("TVOC:%u (%u)", mps, mcnt);
fcnt = mcnt = 0;
start_at = now;
}
}
}
// Task for SHT30(ENV3)
void update_sht30(void*)
{
static uint32_t fcnt{}, mps{}, mcnt{};
static unsigned long start_at{};
for (;;) {
// Exclusive control of TwoWire access and unit updates
xSemaphoreTake(_updateLock, portMAX_DELAY);
unitSHT30.update();
xSemaphoreGive(_updateLock);
// If measurement data is available, acquire it and pass it to the UI.
// If the UI is locked, skip and continue.
if (!unitSHT30.empty()) {
if (env3SmallUI.lock(ui_take_wait)) {
mcnt += unitSHT30.available();
auto latest = unitSHT30.latest();
env3SmallUI.sht30_push_back(latest.temperature(), latest.humidity()); // Gets the latest data
unitSHT30.flush(); // Discard all data
env3SmallUI.unlock();
}
}
// std::this_thread::yield();
m5::utility::delay(1);
++fcnt;
auto now = m5::utility::millis();
if (now >= start_at + 1000) {
mps = fcnt;
M5_LOGD("SHT30:%u (%u)", mps, mcnt);
fcnt = mcnt = 0;
start_at = now;
}
}
}
// Task for QMP6988(ENV3)
void update_qmp6988(void*)
{
static uint32_t fcnt{}, mps{}, mcnt{};
static unsigned long start_at{};
for (;;) {
// Exclusive control of TwoWire access and unit updates
xSemaphoreTake(_updateLock, portMAX_DELAY);
unitQMP6988.update();
xSemaphoreGive(_updateLock);
// If measurement data is available, acquire it and pass it to the UI.
// If the UI is locked, skip and continue.
if (!unitQMP6988.empty()) {
if (env3SmallUI.lock(ui_take_wait)) {
mcnt += unitQMP6988.available();
auto latest = unitQMP6988.latest();
env3SmallUI.qmp6988_push_back(latest.temperature(), latest.pressure()); // Gets the latest data
unitQMP6988.flush(); // Discard all data
env3SmallUI.unlock();
}
}
// std::this_thread::yield();
m5::utility::delay(1);
++fcnt;
auto now = m5::utility::millis();
if (now >= start_at + 1000) {
mps = fcnt;
M5_LOGD("QMP6988:%u (%u)", mps, mcnt);
fcnt = mcnt = 0;
start_at = now;
}
}
}
// Task for HEART
void update_heart(void*)
{
static uint32_t fcnt{}, mps{}, mcnt{};
static unsigned long start_at{};
for (;;) {
// Exclusive control of TwoWire access and unit updates
xSemaphoreTake(_updateLock, portMAX_DELAY);
unitHeart.update();
xSemaphoreGive(_updateLock);
// If measurement data is available, acquire it and pass it to the UI.
// If the UI is locked, skip and continue.
if (!unitHeart.empty()) {
if (heartSmallUI.lock(ui_take_wait)) {
mcnt += unitHeart.available();
while (unitHeart.available()) {
heartSmallUI.push_back(unitHeart.ir(), unitHeart.red());
unitHeart.discard();
}
heartSmallUI.unlock();
}
}
m5::utility::delay(1);
// std::this_thread::yield();
++fcnt;
auto now = m5::utility::millis();
if (now >= start_at + 1000) {
mps = fcnt;
M5_LOGD("Heart:%u (%u)", mps, mcnt);
fcnt = mcnt = 0;
start_at = now;
}
}
}
void drawUI(LovyanGFX& dst, const uint32_t x, const uint32_t yoffset)
{
vmeterSmallUI.push(&dst, 0, 0 + yoffset);
tvocSmallUI.push(&dst, lcd.width() >> 1, 0 + yoffset);
env3SmallUI.push(&dst, 0, (lcd.height() >> 1) + yoffset);
heartSmallUI.push(&dst, lcd.width() >> 1, (lcd.height() >> 1) + yoffset);
}
} // namespace
void setup()
{
M5.begin();
lcd.startWrite();
lcd.clear(TFT_DARKGRAY);
//
strip_height = lcd.height() / SPLIT_NUM;
uint32_t cnt{};
for (auto&& spr : strips) {
spr.setPsram(false);
spr.setColorDepth(lcd.getColorDepth());
cnt += spr.createSprite(lcd.width(), strip_height) ? 1 : 0;
}
assert(cnt == 2 && "Failed to create sprite");
prepare();
auto pin_num_sda = M5.getPin(m5::pin_name_t::port_a_sda);
auto pin_num_scl = M5.getPin(m5::pin_name_t::port_a_scl);
M5_LOGI("getPin: SDA:%u SCL:%u", pin_num_sda, pin_num_scl);
Wire.begin(pin_num_sda, pin_num_scl, 400000U);
if (!unitPaHub.add(unitVmeter, 0) /* Connect Vmeter to PaHub2 ch:0 */
|| !unitPaHub.add(unitTVOC, 1) /* Connect TVOC to PaHub2 ch:1 */
|| !unitPaHub.add(unitENV3, 2) /* Connect ENV3 to PaHub2 ch:2 */
|| !unitPaHub.add(unitHeart, 3) /* Connect HEART to PaHub2 ch:3 */
|| !Units.add(unitPaHub, Wire) /* Connect PaHub2 to Core */
|| !Units.begin() /* Begin UnitUnified */
) {
M5_LOGE("Failed to begin");
lcd.clear(TFT_RED);
while (true) {
m5::utility::delay(10000);
}
}
lcd.clear(TFT_DARKGREEN);
M5_LOGI("M5UnitUnified has been begun");
M5_LOGI("%s", Units.debugInfo().c_str());
M5_LOGI("CPP %ld", __cplusplus);
M5_LOGI("ESP-IDF Version %d.%d.%d", (ESP_IDF_VERSION >> 16) & 0xFF, (ESP_IDF_VERSION >> 8) & 0xFF,
ESP_IDF_VERSION & 0xFF);
M5_LOGI("BOARD:%X", M5.getBoard());
M5_LOGI("Heap: %u", esp_get_free_heap_size());
//
_updateLock = xSemaphoreCreateBinary();
xSemaphoreGive(_updateLock);
xTaskCreateUniversal(update_vmeter, "vmeter", 8192, nullptr, 2, nullptr, PRO_CPU_NUM);
xTaskCreateUniversal(update_tvoc, "tvoc", 8192, nullptr, 1, nullptr, PRO_CPU_NUM);
xTaskCreateUniversal(update_sht30, "sht30", 8192, nullptr, 1, nullptr, PRO_CPU_NUM);
xTaskCreateUniversal(update_qmp6988, "qmp6988", 8192, nullptr, 1, nullptr, PRO_CPU_NUM);
xTaskCreateUniversal(update_heart, "heart", 8192, nullptr, 1, nullptr, PRO_CPU_NUM);
}
void loop()
{
static uint32_t fpsCnt{}, fps{};
static unsigned long start_at{};
++fpsCnt;
auto now = m5::utility::millis();
if (now >= start_at + 1000) {
fps = fpsCnt;
M5_LOGD("FPS:%u", fps);
fpsCnt = 0;
start_at = now;
}
M5.update();
// All units do their own updates, so there is no need to call for a unit-wide update here.
// xSemaphoreTake(_updateLock, portMAX_DELAY);
// unitTVOC.update();
// xSemaphoreGive(_updateLock);
tvocSmallUI.update();
vmeterSmallUI.update();
heartSmallUI.update();
env3SmallUI.update();
static uint32_t current{};
int32_t offset{};
uint32_t cnt{SPLIT_NUM};
while (cnt--) {
auto& spr = strips[current];
spr.clear();
drawUI(spr, 0, offset);
spr.pushSprite(&lcd, 0, -offset);
current ^= 1;
offset -= strip_height;
}
}