sTodo-m5paper-client/libraries/FastLED/examples/Fire2023/Fire2023.ino
2025-06-30 20:47:33 +02:00

252 lines
8.3 KiB
C++

/*This is a fire effect based on the famous Fire2012; but with various small improvements.
Perlin noise is being used to make a fire layer and a smoke layer;
and the overlay of both can make a quite realistic effect.
The speed of both need to be adapted to the matrix size and width:
* Super small matrices (like 3x3 led) don't need the smoke
* medium sized matrices (8x8 for example) profit from fine tuning both Fire Speed/scale as well as Smoke speed/scale
This code was adapted for a matrix with just four LED columns in 90° around a core and a height of 28.
Right at the bottom of the code, you find a translation matrix that needs to be adapted to your set up. I included
a link to a helpful page for this.
@repo https://github.com/Anderas2/Fire2023
@author https://github.com/Anderas2
Demo: https://www.youtube.com/shorts/a_Wr0q9YQs4
*/
#include "FastLED.h"
#include "fl/xymap.h"
#include "fl/screenmap.h"
#include "fl/vector.h"
using namespace fl;
// matrix size
#define WIDTH 4
#define HEIGHT 28
#define CentreX (WIDTH / 2) - 1
#define CentreY (HEIGHT / 2) - 1
// NUM_LEDS = WIDTH * HEIGHT
#define PIXELPIN 18
#define NUM_LEDS 120
#define LAST_VISIBLE_LED 119
// Fire properties
#define BRIGHTNESS 255
#define FIRESPEED 17
#define FLAMEHEIGHT 3.8 // the higher the value, the higher the flame
#define FIRENOISESCALE 125 // small values, softer fire. Big values, blink fire. 0-255
// Smoke screen properties
// The smoke screen works best for big fire effects. It effectively cuts of a part of the flames
// from the rest, sometimes; which looks very much fire-like. For small fire effects with low
// LED count in the height, it doesn't help
// speed must be a little different and faster from Firespeed, to be visible.
// Dimmer should be somewhere in the middle for big fires, and low for small fires.
#define SMOKESPEED 25 // how fast the perlin noise is parsed for the smoke
#define SMOKENOISE_DIMMER 250 // thickness of smoke: the lower the value, the brighter the flames. 0-255
#define SMOKENOISESCALE 125 // small values, softer smoke. Big values, blink smoke. 0-255
CRGB leds[NUM_LEDS];
// fire palette roughly like matlab "hot" colormap
// This was one of the most important parts to improve - fire color makes fire impression.
// position, r, g, b value.
// max value for "position" is BRIGHTNESS
DEFINE_GRADIENT_PALETTE(hot_gp) {
27, 0, 0, 0, // black
28, 140, 40, 0, // red
30, 205, 80, 0, // orange
155, 255, 100, 0,
210, 255, 200, 0, // yellow
255, 255, 255, 255 // white
};
CRGBPalette32 hotPalette = hot_gp;
// Map XY coordinates to numbers on the LED strip
uint8_t XY (uint8_t x, uint8_t y);
// parameters and buffer for the noise array
#define NUM_LAYERS 2
// two layers of perlin noise make the fire effect
#define FIRENOISE 0
#define SMOKENOISE 1
uint32_t x[NUM_LAYERS];
uint32_t y[NUM_LAYERS];
uint32_t z[NUM_LAYERS];
uint32_t scale_x[NUM_LAYERS];
uint32_t scale_y[NUM_LAYERS];
uint8_t noise[NUM_LAYERS][WIDTH][HEIGHT];
uint8_t noise2[NUM_LAYERS][WIDTH][HEIGHT];
uint8_t heat[NUM_LEDS];
ScreenMap makeScreenMap();
void setup() {
//Serial.begin(115200);
// Adjust this for you own setup. Use the hardware SPI pins if possible.
// On Teensy 3.1/3.2 the pins are 11 & 13
// Details here: https://github.com/FastLED/FastLED/wiki/SPI-Hardware-or-Bit-banging
// In case you see flickering / glitching leds, reduce the data rate to 12 MHZ or less
auto screenMap = makeScreenMap();
FastLED.addLeds<NEOPIXEL, PIXELPIN>(leds, NUM_LEDS).setScreenMap(screenMap); // Pin für Neopixel
FastLED.setBrightness(BRIGHTNESS);
FastLED.setDither(DISABLE_DITHER);
}
void Fire2023(uint32_t now);
void loop() {
EVERY_N_MILLISECONDS(8) {
Fire2023(millis());
}
FastLED.show();
}
ScreenMap makeScreenMap() {
fl::vector<vec2f> lut;
for (uint16_t y = 0; y < WIDTH; y++) {
for (uint16_t x = 0; x < HEIGHT; x++) {
vec2f xy = {float(x) * 3, float(y) * 20};
lut.push_back(xy);
}
}
return ScreenMap(lut.data(), lut.size(), 1);
}
void Fire2023(uint32_t now) {
// some changing values
// these values are produced by perlin noise to add randomness and smooth transitions
uint16_t ctrl1 = inoise16(11 * now, 0, 0);
uint16_t ctrl2 = inoise16(13 * now, 100000, 100000);
uint16_t ctrl = ((ctrl1 + ctrl2) >> 1);
// parameters for the fire heat map
x[FIRENOISE] = 3 * ctrl * FIRESPEED;
y[FIRENOISE] = 20 * now * FIRESPEED;
z[FIRENOISE] = 5 * now * FIRESPEED;
scale_x[FIRENOISE] = scale8(ctrl1, FIRENOISESCALE);
scale_y[FIRENOISE] = scale8(ctrl2, FIRENOISESCALE);
//calculate the perlin noise data for the fire
for (uint8_t x_count = 0; x_count < WIDTH; x_count++) {
uint32_t xoffset = scale_x[FIRENOISE] * (x_count - CentreX);
for (uint8_t y_count = 0; y_count < HEIGHT; y_count++) {
uint32_t yoffset = scale_y[FIRENOISE] * (y_count - CentreY);
uint16_t data = ((inoise16(x[FIRENOISE] + xoffset, y[FIRENOISE] + yoffset, z[FIRENOISE])) + 1);
noise[FIRENOISE][x_count][y_count] = data >> 8;
}
}
// parameters for the smoke map
x[SMOKENOISE] = 3 * ctrl * SMOKESPEED;
y[SMOKENOISE] = 20 * now * SMOKESPEED;
z[SMOKENOISE] = 5 * now * SMOKESPEED;
scale_x[SMOKENOISE] = scale8(ctrl1, SMOKENOISESCALE);
scale_y[SMOKENOISE] = scale8(ctrl2, SMOKENOISESCALE);
//calculate the perlin noise data for the smoke
for (uint8_t x_count = 0; x_count < WIDTH; x_count++) {
uint32_t xoffset = scale_x[SMOKENOISE] * (x_count - CentreX);
for (uint8_t y_count = 0; y_count < HEIGHT; y_count++) {
uint32_t yoffset = scale_y[SMOKENOISE] * (y_count - CentreY);
uint16_t data = ((inoise16(x[SMOKENOISE] + xoffset, y[SMOKENOISE] + yoffset, z[SMOKENOISE])) + 1);
noise[SMOKENOISE][x_count][y_count] = data / SMOKENOISE_DIMMER;
}
}
//copy everything one line up
for (uint8_t y = 0; y < HEIGHT - 1; y++) {
for (uint8_t x = 0; x < WIDTH; x++) {
heat[XY(x, y)] = heat[XY(x, y + 1)];
}
}
// draw lowest line - seed the fire where it is brightest and hottest
for (uint8_t x = 0; x < WIDTH; x++) {
heat[XY(x, HEIGHT-1)] = noise[FIRENOISE][WIDTH - x][CentreX];
//if (heat[XY(x, HEIGHT-1)] < 200) heat[XY(x, HEIGHT-1)] = 150;
}
// dim the flames based on FIRENOISE noise.
// if the FIRENOISE noise is strong, the led goes out fast
// if the FIRENOISE noise is weak, the led stays on stronger.
// once the heat is gone, it stays dark.
for (uint8_t y = 0; y < HEIGHT - 1; y++) {
for (uint8_t x = 0; x < WIDTH; x++) {
uint8_t dim = noise[FIRENOISE][x][y];
// high value in FLAMEHEIGHT = less dimming = high flames
dim = dim / FLAMEHEIGHT;
dim = 255 - dim;
heat[XY(x, y)] = scale8(heat[XY(x, y)] , dim);
// map the colors based on heatmap
// use the heat map to set the color of the LED from the "hot" palette
// whichpalette position brightness blend or not
leds[XY(x, y)] = ColorFromPalette(hotPalette, heat[XY(x, y)], heat[XY(x, y)], LINEARBLEND);
// dim the result based on SMOKENOISE noise
// this is not saved in the heat map - the flame may dim away and come back
// next iteration.
leds[XY(x, y)].nscale8(noise[SMOKENOISE][x][y]);
}
}
}
/* Physical layout of LED strip ****************************/
uint8_t XY (uint8_t x, uint8_t y) {
// any out of bounds address maps to the first hidden pixel
// https://macetech.github.io/FastLED-XY-Map-Generator/
if ( (x >= WIDTH) || (y >= HEIGHT) ) {
return (LAST_VISIBLE_LED + 1);
}
const uint8_t XYTable[] = {
25, 26, 81, 82,
25, 27, 81, 83,
25, 28, 80, 84,
24, 29, 79, 85,
23, 30, 78, 86,
22, 31, 77, 87,
21, 32, 76, 88,
20, 33, 75, 89,
19, 34, 74, 90,
18, 35, 73, 91,
17, 36, 72, 92,
16, 37, 71, 93,
15, 38, 70, 94,
14, 39, 69, 95,
13, 40, 68, 96,
12, 41, 67, 97,
11, 42, 66, 98,
10, 43, 65, 99,
9, 44, 64, 100,
8, 45, 63, 101,
7, 46, 62, 102,
6, 47, 61, 103,
5, 48, 60, 104,
4, 49, 59, 105,
3, 50, 58, 106,
2, 51, 57, 107,
1, 52, 56, 108,
0, 53, 55, 109
};
uint8_t i = (y * WIDTH) + x;
uint8_t j = XYTable[i];
return j;
}