first commit

This commit is contained in:
stuce-bot 2025-06-30 20:47:33 +02:00
commit 5893b00dd2
1669 changed files with 1982740 additions and 0 deletions

View file

@ -0,0 +1,254 @@
/// This is a work in progress showcasing a complex MIDI keyboard
/// visualizer.
/// To run this compiler use
/// > pip install fastled
/// Then go to your sketch directory and run
/// > fastled
#include "shared/defs.h"
#if !ENABLE_SKETCH
// avr can't compile this, neither can the esp8266.
void setup() {}
void loop() {}
#else
//#define DEBUG_PAINTER
//#define DEBUG_KEYBOARD 1
// Repeated keyboard presses in the main loop
#define DEBUG_FORCED_KEYBOARD
// #define DEBUG_MIDI_KEY 72
#define MIDI_SERIAL_PORT Serial1
#define FASTLED_UI // Brings in the UI components.
#include "FastLED.h"
// H
#include <Arduino.h>
#include "shared/Keyboard.h"
#include "shared/color.h"
#include "shared/led_layout_array.h"
#include "shared/Keyboard.h"
#include "shared/Painter.h"
#include "shared/settings.h"
#include "arduino/LedRopeTCL.h"
#include "arduino/ui_state.h"
#include "shared/dprint.h"
#include "fl/dbg.h"
#include "fl/ui.h"
#include "fl/unused.h"
// Spoof the midi library so it thinks it's running on an arduino.
//#ifndef ARDUINO
//#define ARDUINO 1
//#endif
#ifdef MIDI_AUTO_INSTANCIATE
#undef MIDI_AUTO_INSTANCIATE
#define MIDI_AUTO_INSTANCIATE 0
#endif
#include "arduino/MIDI.h"
MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MY_MIDI);
FASTLED_TITLE("Luminescent Grand");
FASTLED_DESCRIPTION("A midi keyboard visualizer.");
/////////////////////////////////////////////////////////
// Light rope and keyboard.
LedRopeTCL led_rope(kNumKeys);
KeyboardState keyboard;
////////////////////////////////////
// Called when the note is pressed.
// Input:
// channel - Ignored.
// midi_note - Value between 21-108 which maps to the keyboard keys.
// velocity - Value between 0-127
void HandleNoteOn(byte channel, byte midi_note, byte velocity) {
FASTLED_DBG("HandleNoteOn: midi_note = " << int(midi_note) << ", velocity = " << int(velocity));
keyboard.HandleNoteOn(midi_note, velocity, color_selector.curr_val(), millis());
}
/////////////////////////////////////////////////////////
// Called when the note is released.
// Input:
// channel - Ignored.
// midi_note - Value between 21-108 which maps to the keyboard keys.
// velocity - Value between 0-127
void HandleNoteOff(byte channel, byte midi_note, byte velocity) {
FASTLED_DBG("HandleNoteOn: midi_note = " << int(midi_note) << ", velocity = " << int(velocity));
keyboard.HandleNoteOff(midi_note, velocity, millis());
}
/////////////////////////////////////////////////////////
// This is uninmplemented because the test keyboard didn't
// have this functionality. Right now the only thing it does is
// print out that the key was pressed.
void HandleAfterTouchPoly(byte channel, byte note, byte pressure) {
keyboard.HandleAfterTouchPoly(note, pressure);
}
/////////////////////////////////////////////////////////
// Detects whether the foot pedal has been touched.
void HandleControlChange(byte channel, byte d1, byte d2) {
keyboard.HandleControlChange(d1, d2);
}
void HandleAfterTouchChannel(byte channel, byte pressure) {
#if 0 // Disabled for now.
if (0 == pressure) {
for (int i = 0; i < kNumKeys; ++i) {
Key& key = keyboard.keys_[i];
key.SetOff();
}
}
#endif
}
/////////////////////////////////////////////////////////
// Called once when the app starts.
void setup() {
FASTLED_DBG("setup");
// Serial port for logging.
Serial.begin(57600);
//start serial with midi baudrate 31250
// Initiate MIDI communications, listen to all channels
MY_MIDI.begin(MIDI_CHANNEL_OMNI);
// Connect the HandleNoteOn function to the library, so it is called upon reception of a NoteOn.
MY_MIDI.setHandleNoteOn(HandleNoteOn);
MY_MIDI.setHandleNoteOff(HandleNoteOff);
MY_MIDI.setHandleAfterTouchPoly(HandleAfterTouchPoly);
MY_MIDI.setHandleAfterTouchChannel(HandleAfterTouchChannel);
MY_MIDI.setHandleControlChange(HandleControlChange);
ui_init();
}
void DbgDoSimulatedKeyboardPress() {
#ifdef DEBUG_FORCED_KEYBOARD
static uint32_t start_time = 0;
static bool toggle = 0;
const uint32_t time_on = 25;
const uint32_t time_off = 500;
// Just force it on whenever this function is called.
is_debugging = true;
uint32_t now = millis();
uint32_t delta_time = now - start_time;
uint32_t threshold_time = toggle ? time_off : time_on;
if (delta_time < threshold_time) {
return;
}
int random_key = random(0, 88);
start_time = now;
if (toggle) {
HandleNoteOn(0, random_key, 64);
} else {
HandleNoteOff(0, random_key, 82);
}
toggle = !toggle;
#endif
}
/////////////////////////////////////////////////////////;p
// Repeatedly called by the app.
void loop() {
//FASTLED_DBG("loop");
// Calculate dt.
static uint32_t s_prev_time = 0;
uint32_t prev_time = 0;
FASTLED_UNUSED(prev_time); // actually used in perf tests.
uint32_t now_ms = millis();
uint32_t delta_ms = now_ms - s_prev_time;
s_prev_time = now_ms;
if (!is_debugging) {
if (Serial.available() > 0) {
int v = Serial.read();
if (v == 'd') {
is_debugging = true;
}
}
}
DbgDoSimulatedKeyboardPress();
const unsigned long start_time = millis();
// Each frame we call the midi processor 100 times to make sure that all notes
// are processed.
for (int i = 0; i < 100; ++i) {
MY_MIDI.read();
}
const unsigned long midi_time = millis() - start_time;
// Updates keyboard: releases sustained keys that.
const uint32_t keyboard_time_start = millis();
// This is kind of a hack... but give the keyboard a future time
// so that all keys just pressed get a value > 0 for their time
// durations.
keyboard.Update(now_ms + delta_ms, delta_ms);
const uint32_t keyboard_delta_time = millis() - keyboard_time_start;
ui_state ui_st = ui_update(now_ms, delta_ms);
//dprint("vis selector = ");
//dprintln(vis_state);
// These int values are for desting the performance of the
// app. If the app ever runs slow then set kShowFps to 1
// in the settings.h file.
const unsigned long start_painting = millis();
FASTLED_UNUSED(start_painting);
// Paints the keyboard using the led_rope.
Painter::VisState which_vis = Painter::VisState(ui_st.which_visualizer);
Painter::Paint(now_ms, delta_ms, which_vis, &keyboard, &led_rope);
const unsigned long paint_time = millis() - start_time;
const unsigned long total_time = midi_time + paint_time + keyboard_delta_time;
if (kShowFps) {
float fps = 1.0f/(float(total_time) / 1000.f);
Serial.print("fps - "); Serial.println(fps);
Serial.print("midi time - "); Serial.println(midi_time);
Serial.print("keyboard update time - "); Serial.println(keyboard_delta_time);
Serial.print("draw & paint time - "); Serial.println(paint_time);
}
EVERY_N_SECONDS(1) {
FASTLED_DBG("is_debugging = " << is_debugging);
}
FastLED.show();
}
#endif // __AVR__

View file

@ -0,0 +1,179 @@
// Copyleft (c) 2012, Zach Vorhies
// Public domain, no rights reserved.
// This object holds a frame buffer and effects can be applied. This is a higher level
// object than the TCL class which this object uses for drawing.
//#include "./tcl.h"
#include <Arduino.h>
#include "../shared/color.h"
#include "../shared/framebuffer.h"
#include "../shared/settings.h"
#include "./LedRopeTCL.h"
#include "../shared/led_layout_array.h"
#include "FastLED.h"
#include "fl/dbg.h"
#include "fl/ui.h"
using namespace fl;
#define CHIPSET WS2812
#define PIN_DATA 1
#define PIN_CLOCK 2
namespace {
UIButton buttonAllWhite("All white");
ScreenMap init_screenmap() {
LedColumns cols = LedLayoutArray();
const int length = cols.length;
int sum = 0;
for (int i = 0; i < length; ++i) {
sum += cols.array[i];
}
ScreenMap screen_map(sum, 0.8f);
int curr_idx = 0;
for (int i = 0; i < length; ++i) {
int n = cols.array[i];
int stagger = i % 2 ? 4 : 0;
for (int j = 0; j < n; ++j) {
fl::vec2f xy(i*4, j*8 + stagger);
screen_map.set(curr_idx++, xy);
}
}
return screen_map;
}
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::PreDrawSetup() {
if (!lazy_initialized_) {
// This used to do something, now it does nothing.
lazy_initialized_ = true;
}
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::RawBeginDraw() {
PreDrawSetup();
led_buffer_.clear();
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::RawDrawPixel(const Color3i& c) {
RawDrawPixel(c.r_, c.g_, c.b_);
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::RawDrawPixel(byte r, byte g, byte b) {
if (led_buffer_.size() >= mScreenMap.getLength()) {
return;
}
if (buttonAllWhite.isPressed()) {
r = 0xff;
g = 0xff;
b = 0xff;
}
CRGB c(r, g, b);
led_buffer_.push_back(CRGB(r, g, b));
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::RawDrawPixels(const Color3i& c, int n) {
for (int i = 0; i < n; ++i) {
RawDrawPixel(c);
}
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::set_draw_offset(int val) {
draw_offset_ = constrain(val, 0, frame_buffer_.length());
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::RawCommitDraw() {
FASTLED_WARN("\n\n############## COMMIT DRAW ################\n\n");
if (!controller_added_) {
controller_added_ = true;
CRGB* leds = led_buffer_.data();
size_t n_leds = led_buffer_.size();
FastLED.addLeds<APA102, PIN_DATA, PIN_CLOCK>(leds, n_leds).setScreenMap(mScreenMap);
}
FASTLED_WARN("FastLED.show");
FastLED.show();
}
///////////////////////////////////////////////////////////////////////////////
LedRopeTCL::LedRopeTCL(int n_pixels)
: draw_offset_(0), lazy_initialized_(false), frame_buffer_(n_pixels) {
mScreenMap = init_screenmap();
led_buffer_.reserve(mScreenMap.getLength());
}
///////////////////////////////////////////////////////////////////////////////
LedRopeTCL::~LedRopeTCL() {
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::Draw() {
RawBeginDraw();
const Color3i* begin = GetIterator(0);
const Color3i* middle = GetIterator(draw_offset_);
const Color3i* end = GetIterator(length() - 1);
for (const Color3i* it = middle; it != end; ++it) {
RawDrawPixel(*it);
}
for (const Color3i* it = begin; it != middle; ++it) {
RawDrawPixel(*it);
}
RawCommitDraw();
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::DrawSequentialRepeat(int repeat) {
RawBeginDraw();
const Color3i* begin = GetIterator(0);
const Color3i* middle = GetIterator(draw_offset_);
const Color3i* end = GetIterator(length());
for (const Color3i* it = middle; it != end; ++it) {
for (int i = 0; i < repeat; ++i) {
RawDrawPixel(it->r_, it->g_, it->b_);
}
}
for (const Color3i* it = begin; it != middle; ++it) {
for (int i = 0; i < repeat; ++i) {
RawDrawPixel(it->r_, it->g_, it->b_);
}
}
RawCommitDraw();
}
///////////////////////////////////////////////////////////////////////////////
void LedRopeTCL::DrawRepeat(const int* value_array, int array_length) {
RawBeginDraw();
// Make sure that the number of colors to repeat does not exceed the length
// of the rope.
const int len = MIN(array_length, frame_buffer_.length());
for (int i = 0; i < len; ++i) {
const Color3i* cur_color = GetIterator(i); // Current color.
const int repeat_count = value_array[i];
// Repeatedly send the same color down the led rope.
for (int k = 0; k < repeat_count; ++k) {
RawDrawPixel(cur_color->r_, cur_color->g_, cur_color->b_);
}
}
// Finish the drawing.
RawCommitDraw();
}

View file

@ -0,0 +1,81 @@
// Copyleft (c) 2012, Zach Vorhies
// Public domain, no rights reserved.
// This object holds a frame buffer and effects can be applied. This is a higher level
// object than the TCL class which this object uses for drawing.
#ifndef LED_REPE_TCL_H_
#define LED_REPE_TCL_H_
#include <Arduino.h>
#include "../shared/color.h"
#include "../shared/framebuffer.h"
#include "../shared/led_rope_interface.h"
#include "fl/vector.h"
#include "crgb.h"
#include "fl/screenmap.h"
using namespace fl;
// LedRopeTCL is a C++ wrapper around the Total Control Lighting LED rope
// device driver (TCL.h). This wrapper includes automatic setup of the LED
// rope and allows the user to use a graphics-state like interface for
// talking to the rope. A copy of the rope led state is held in this class
// which makes blending operations easier. After all changes by the user
// are applied to the rope, the hardware is updated via an explicit Draw()
// command.
//
// Whole-rope blink Example:
// #include <SPI.h>
// #include <TCL.h> // From CoolNeon (https://bitbucket.org/devries/arduino-tcl)
// #include "LedRopeTCL.h"
// LedRopeTCL led_rope(100); // 100 led-strand.
//
// void setup() {} // No setup necessary for Led rope.
// void loop() {
// led_rope.FillColor(LedRopeTCL::Color3i::Black());
// led_rope.Draw();
// delay(1000);
// led_rope.FillColor(LedRopeTCL::Color3i::White());
// led_rope.Draw();
// delay(1000);
// }
class LedRopeTCL : public LedRopeInterface {
public:
LedRopeTCL(int n_pixels);
virtual ~LedRopeTCL();
void Draw();
void DrawSequentialRepeat(int repeat);
void DrawRepeat(const int* value_array, int array_length);
void set_draw_offset(int val);
virtual void Set(int i, const Color3i& c) {
frame_buffer_.Set(i, c);
}
Color3i* GetIterator(int i) {
return frame_buffer_.GetIterator(i);
}
int length() const { return frame_buffer_.length(); }
void RawBeginDraw();
void RawDrawPixel(const Color3i& c);
void RawDrawPixels(const Color3i& c, int n);
void RawDrawPixel(uint8_t r, uint8_t g, uint8_t b);
void RawCommitDraw();
protected:
void PreDrawSetup();
int draw_offset_ = 0;
bool lazy_initialized_;
FrameBuffer frame_buffer_;
bool controller_added_ = false;
fl::HeapVector<CRGB> led_buffer_;
fl::ScreenMap mScreenMap;
};
#endif // LED_REPE_TCL_H_

View file

@ -0,0 +1,115 @@
/*!
* @file MIDI.cpp
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino
* @author Francois Best
* @date 24/02/11
* @license MIT - Copyright (c) 2015 Francois Best
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "MIDI.h"
// -----------------------------------------------------------------------------
BEGIN_MIDI_NAMESPACE
/*! \brief Encode System Exclusive messages.
SysEx messages are encoded to guarantee transmission of data bytes higher than
127 without breaking the MIDI protocol. Use this static method to convert the
data you want to send.
\param inData The data to encode.
\param outSysEx The output buffer where to store the encoded message.
\param inLength The length of the input buffer.
\param inFlipHeaderBits True for Korg and other who store MSB in reverse order
\return The length of the encoded output buffer.
@see decodeSysEx
Code inspired from Ruin & Wesen's SysEx encoder/decoder - http://ruinwesen.com
*/
unsigned encodeSysEx(const byte* inData,
byte* outSysEx,
unsigned inLength,
bool inFlipHeaderBits)
{
unsigned outLength = 0; // Num bytes in output array.
byte count = 0; // Num 7bytes in a block.
outSysEx[0] = 0;
for (unsigned i = 0; i < inLength; ++i)
{
const byte data = inData[i];
const byte msb = data >> 7;
const byte body = data & 0x7f;
outSysEx[0] |= (msb << (inFlipHeaderBits ? count : (6 - count)));
outSysEx[1 + count] = body;
if (count++ == 6)
{
outSysEx += 8;
outLength += 8;
outSysEx[0] = 0;
count = 0;
}
}
return outLength + count + (count != 0 ? 1 : 0);
}
/*! \brief Decode System Exclusive messages.
SysEx messages are encoded to guarantee transmission of data bytes higher than
127 without breaking the MIDI protocol. Use this static method to reassemble
your received message.
\param inSysEx The SysEx data received from MIDI in.
\param outData The output buffer where to store the decrypted message.
\param inLength The length of the input buffer.
\param inFlipHeaderBits True for Korg and other who store MSB in reverse order
\return The length of the output buffer.
@see encodeSysEx @see getSysExArrayLength
Code inspired from Ruin & Wesen's SysEx encoder/decoder - http://ruinwesen.com
*/
unsigned decodeSysEx(const byte* inSysEx,
byte* outData,
unsigned inLength,
bool inFlipHeaderBits)
{
unsigned count = 0;
byte msbStorage = 0;
byte byteIndex = 0;
for (unsigned i = 0; i < inLength; ++i)
{
if ((i % 8) == 0)
{
msbStorage = inSysEx[i];
byteIndex = 6;
}
else
{
const byte body = inSysEx[i];
const byte shift = inFlipHeaderBits ? 6 - byteIndex : byteIndex;
const byte msb = byte(((msbStorage >> shift) & 1) << 7);
byteIndex--;
outData[count++] = msb | body;
}
}
return count;
}
END_MIDI_NAMESPACE

View file

@ -0,0 +1,308 @@
/*!
* @file MIDI.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino
* @author Francois Best, lathoub
* @date 24/02/11
* @license MIT - Copyright (c) 2015 Francois Best
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#include "midi_Defs.h"
#include "midi_Platform.h"
#include "midi_Settings.h"
#include "midi_Message.h"
#include "serialMIDI.h"
// -----------------------------------------------------------------------------
BEGIN_MIDI_NAMESPACE
#define MIDI_LIBRARY_VERSION 0x050000
#define MIDI_LIBRARY_VERSION_MAJOR 5
#define MIDI_LIBRARY_VERSION_MINOR 0
#define MIDI_LIBRARY_VERSION_PATCH 0
/*! \brief The main class for MIDI handling.
It is templated over the type of serial port to provide abstraction from
the hardware interface, meaning you can use HardwareSerial, SoftwareSerial
or ak47's Uart classes. The only requirement is that the class implements
the begin, read, write and available methods.
*/
template<class Transport, class _Settings = DefaultSettings, class _Platform = DefaultPlatform>
class MidiInterface
{
public:
typedef _Settings Settings;
typedef _Platform Platform;
typedef Message<Settings::SysExMaxSize> MidiMessage;
public:
inline MidiInterface(Transport&);
inline ~MidiInterface();
public:
void begin(Channel inChannel = 1);
// -------------------------------------------------------------------------
// MIDI Output
public:
inline void sendNoteOn(DataByte inNoteNumber,
DataByte inVelocity,
Channel inChannel);
inline void sendNoteOff(DataByte inNoteNumber,
DataByte inVelocity,
Channel inChannel);
inline void sendProgramChange(DataByte inProgramNumber,
Channel inChannel);
inline void sendControlChange(DataByte inControlNumber,
DataByte inControlValue,
Channel inChannel);
inline void sendPitchBend(int inPitchValue, Channel inChannel);
inline void sendPitchBend(double inPitchValue, Channel inChannel);
inline void sendPolyPressure(DataByte inNoteNumber,
DataByte inPressure,
Channel inChannel) __attribute__ ((deprecated));
inline void sendAfterTouch(DataByte inPressure,
Channel inChannel);
inline void sendAfterTouch(DataByte inNoteNumber,
DataByte inPressure,
Channel inChannel);
inline void sendSysEx(unsigned inLength,
const byte* inArray,
bool inArrayContainsBoundaries = false);
inline void sendTimeCodeQuarterFrame(DataByte inTypeNibble,
DataByte inValuesNibble);
inline void sendTimeCodeQuarterFrame(DataByte inData);
inline void sendSongPosition(unsigned inBeats);
inline void sendSongSelect(DataByte inSongNumber);
inline void sendTuneRequest();
inline void sendCommon(MidiType inType, unsigned = 0);
inline void sendClock() { sendRealTime(Clock); };
inline void sendStart() { sendRealTime(Start); };
inline void sendStop() { sendRealTime(Stop); };
inline void sendTick() { sendRealTime(Tick); };
inline void sendContinue() { sendRealTime(Continue); };
inline void sendActiveSensing() { sendRealTime(ActiveSensing); };
inline void sendSystemReset() { sendRealTime(SystemReset); };
inline void sendRealTime(MidiType inType);
inline void beginRpn(unsigned inNumber,
Channel inChannel);
inline void sendRpnValue(unsigned inValue,
Channel inChannel);
inline void sendRpnValue(byte inMsb,
byte inLsb,
Channel inChannel);
inline void sendRpnIncrement(byte inAmount,
Channel inChannel);
inline void sendRpnDecrement(byte inAmount,
Channel inChannel);
inline void endRpn(Channel inChannel);
inline void beginNrpn(unsigned inNumber,
Channel inChannel);
inline void sendNrpnValue(unsigned inValue,
Channel inChannel);
inline void sendNrpnValue(byte inMsb,
byte inLsb,
Channel inChannel);
inline void sendNrpnIncrement(byte inAmount,
Channel inChannel);
inline void sendNrpnDecrement(byte inAmount,
Channel inChannel);
inline void endNrpn(Channel inChannel);
inline void send(const MidiMessage&);
public:
void send(MidiType inType,
DataByte inData1,
DataByte inData2,
Channel inChannel);
// -------------------------------------------------------------------------
// MIDI Input
public:
inline bool read();
inline bool read(Channel inChannel);
public:
inline MidiType getType() const;
inline Channel getChannel() const;
inline DataByte getData1() const;
inline DataByte getData2() const;
inline const byte* getSysExArray() const;
inline unsigned getSysExArrayLength() const;
inline bool check() const;
public:
inline Channel getInputChannel() const;
inline void setInputChannel(Channel inChannel);
public:
static inline MidiType getTypeFromStatusByte(byte inStatus);
static inline Channel getChannelFromStatusByte(byte inStatus);
static inline bool isChannelMessage(MidiType inType);
// -------------------------------------------------------------------------
// Input Callbacks
public:
inline void setHandleMessage(void (*fptr)(const MidiMessage&)) { mMessageCallback = fptr; };
inline void setHandleError(ErrorCallback fptr) { mErrorCallback = fptr; }
inline void setHandleNoteOff(NoteOffCallback fptr) { mNoteOffCallback = fptr; }
inline void setHandleNoteOn(NoteOnCallback fptr) { mNoteOnCallback = fptr; }
inline void setHandleAfterTouchPoly(AfterTouchPolyCallback fptr) { mAfterTouchPolyCallback = fptr; }
inline void setHandleControlChange(ControlChangeCallback fptr) { mControlChangeCallback = fptr; }
inline void setHandleProgramChange(ProgramChangeCallback fptr) { mProgramChangeCallback = fptr; }
inline void setHandleAfterTouchChannel(AfterTouchChannelCallback fptr) { mAfterTouchChannelCallback = fptr; }
inline void setHandlePitchBend(PitchBendCallback fptr) { mPitchBendCallback = fptr; }
inline void setHandleSystemExclusive(SystemExclusiveCallback fptr) { mSystemExclusiveCallback = fptr; }
inline void setHandleTimeCodeQuarterFrame(TimeCodeQuarterFrameCallback fptr) { mTimeCodeQuarterFrameCallback = fptr; }
inline void setHandleSongPosition(SongPositionCallback fptr) { mSongPositionCallback = fptr; }
inline void setHandleSongSelect(SongSelectCallback fptr) { mSongSelectCallback = fptr; }
inline void setHandleTuneRequest(TuneRequestCallback fptr) { mTuneRequestCallback = fptr; }
inline void setHandleClock(ClockCallback fptr) { mClockCallback = fptr; }
inline void setHandleStart(StartCallback fptr) { mStartCallback = fptr; }
inline void setHandleTick(TickCallback fptr) { mTickCallback = fptr; }
inline void setHandleContinue(ContinueCallback fptr) { mContinueCallback = fptr; }
inline void setHandleStop(StopCallback fptr) { mStopCallback = fptr; }
inline void setHandleActiveSensing(ActiveSensingCallback fptr) { mActiveSensingCallback = fptr; }
inline void setHandleSystemReset(SystemResetCallback fptr) { mSystemResetCallback = fptr; }
inline void disconnectCallbackFromType(MidiType inType);
private:
void launchCallback();
void (*mMessageCallback)(const MidiMessage& message) = nullptr;
ErrorCallback mErrorCallback = nullptr;
NoteOffCallback mNoteOffCallback = nullptr;
NoteOnCallback mNoteOnCallback = nullptr;
AfterTouchPolyCallback mAfterTouchPolyCallback = nullptr;
ControlChangeCallback mControlChangeCallback = nullptr;
ProgramChangeCallback mProgramChangeCallback = nullptr;
AfterTouchChannelCallback mAfterTouchChannelCallback = nullptr;
PitchBendCallback mPitchBendCallback = nullptr;
SystemExclusiveCallback mSystemExclusiveCallback = nullptr;
TimeCodeQuarterFrameCallback mTimeCodeQuarterFrameCallback = nullptr;
SongPositionCallback mSongPositionCallback = nullptr;
SongSelectCallback mSongSelectCallback = nullptr;
TuneRequestCallback mTuneRequestCallback = nullptr;
ClockCallback mClockCallback = nullptr;
StartCallback mStartCallback = nullptr;
TickCallback mTickCallback = nullptr;
ContinueCallback mContinueCallback = nullptr;
StopCallback mStopCallback = nullptr;
ActiveSensingCallback mActiveSensingCallback = nullptr;
SystemResetCallback mSystemResetCallback = nullptr;
// -------------------------------------------------------------------------
// MIDI Soft Thru
public:
inline Thru::Mode getFilterMode() const;
inline bool getThruState() const;
inline void turnThruOn(Thru::Mode inThruFilterMode = Thru::Full);
inline void turnThruOff();
inline void setThruFilterMode(Thru::Mode inThruFilterMode);
private:
void thruFilter(byte inChannel);
// -------------------------------------------------------------------------
// MIDI Parsing
private:
bool parse();
inline void handleNullVelocityNoteOnAsNoteOff();
inline bool inputFilter(Channel inChannel);
inline void resetInput();
inline void UpdateLastSentTime();
// -------------------------------------------------------------------------
// Transport
public:
Transport* getTransport() { return &mTransport; };
private:
Transport& mTransport;
// -------------------------------------------------------------------------
// Internal variables
private:
Channel mInputChannel;
StatusByte mRunningStatus_RX;
StatusByte mRunningStatus_TX;
byte mPendingMessage[3];
unsigned mPendingMessageExpectedLength;
unsigned mPendingMessageIndex;
unsigned mCurrentRpnNumber;
unsigned mCurrentNrpnNumber;
bool mThruActivated : 1;
Thru::Mode mThruFilterMode : 7;
MidiMessage mMessage;
unsigned long mLastMessageSentTime;
unsigned long mLastMessageReceivedTime;
unsigned long mSenderActiveSensingPeriodicity;
bool mReceiverActiveSensingActivated;
int8_t mLastError;
private:
inline StatusByte getStatus(MidiType inType,
Channel inChannel) const;
};
// -----------------------------------------------------------------------------
unsigned encodeSysEx(const byte* inData,
byte* outSysEx,
unsigned inLength,
bool inFlipHeaderBits = false);
unsigned decodeSysEx(const byte* inSysEx,
byte* outData,
unsigned inLength,
bool inFlipHeaderBits = false);
END_MIDI_NAMESPACE
#include "MIDI.hpp"

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,157 @@
#pragma once
#include <Arduino.h>
#include "fl/ui.h"
#include "fl/dbg.h"
using namespace fl;
// Done by hand. Old school.
class ToggleButton {
public:
ToggleButton(int pin) : pin_(pin), on_(false), debounce_timestamp_(0), changed_(false) {
pinMode(pin_, OUTPUT);
digitalWrite(pin_, LOW);
delay(1);
}
// true - button is pressed.
bool Read() {
Update(millis());
return changed_;
}
void Update(uint32_t time_now) {
if ((time_now - debounce_timestamp_) < 150) {
changed_ = false;
return;
}
int val = Read_Internal();
changed_ = on_ != val;
if (changed_) { // Has the toggle switch changed?
on_ = val; // Set the new toggle switch value.
// Protect against debouncing artifacts by putting a 200ms delay from the
// last time the value changed.
if ((time_now - debounce_timestamp_) > 150) {
//++curr_val_; // ... and increment the value.
debounce_timestamp_ = time_now;
}
}
}
private:
bool Read_Internal() {
// Toggle the pin back to INPUT and take a reading.
pinMode(pin_, INPUT);
bool on = (digitalRead(pin_) == HIGH);
// Switch the pin back to output so that we can enable the
// pulldown resister.
pinMode(pin_, OUTPUT);
digitalWrite(pin_, LOW);
return on;
}
int pin_;
bool on_;
uint32_t debounce_timestamp_;
bool changed_;
};
// This is the new type that is built into the midi shield.
class MidiShieldButton {
public:
MidiShieldButton(int pin) : pin_(pin) {
pinMode(pin_, INPUT_PULLUP);
delay(1);
}
bool Read() {
// Toggle the pin back to INPUT and take a reading.
int val = digitalRead(pin_) == LOW;
return val;
}
private:
int pin_;
};
class Potentiometer {
public:
Potentiometer(int sensor_pin) : sensor_pin_(sensor_pin) {}
float Read() {
float avg = 0.0;
// Filter by reading the value multiple times and taking
// the average.
for (int i = 0; i < 8; ++i) {
avg += analogRead(sensor_pin_);
}
avg = avg / 8.0f;
return avg;
}
private:
int sensor_pin_;
};
typedef MidiShieldButton DigitalButton;
class CountingButton {
public:
explicit CountingButton(int but_pin) : button_(but_pin), curr_val_(0), mButton("Counting UIButton") {
debounce_timestamp_ = millis();
on_ = Read();
}
void Update(uint32_t time_now) {
bool clicked = mButton.clicked();
bool val = Read() || mButton.clicked();
bool changed = val != on_;
if (clicked) {
++curr_val_;
debounce_timestamp_ = time_now;
return;
}
if (changed) { // Has the toggle switch changed?
on_ = val; // Set the new toggle switch value.
// Protect against debouncing artifacts by putting a 200ms delay from the
// last time the value changed.
if ((time_now - debounce_timestamp_) > 16) {
if (on_) {
++curr_val_; // ... and increment the value.
}
debounce_timestamp_ = time_now;
}
}
}
int curr_val() const { return curr_val_; }
private:
bool Read() {
return button_.Read();
}
DigitalButton button_;
bool on_;
int curr_val_;
unsigned long debounce_timestamp_;
UIButton mButton;
};
class ColorSelector {
public:
ColorSelector(int sensor_pin) : but_(sensor_pin) {}
void Update() {
but_.Update(millis());
}
int curr_val() const { return but_.curr_val() % 7; }
private:
CountingButton but_;
};

View file

@ -0,0 +1,232 @@
/*!
* @file midi_Defs.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino - Definitions
* @author Francois Best, lathoub
* @date 24/02/11
* @license MIT - Copyright (c) 2015 Francois Best
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#include "midi_Namespace.h"
#if ARDUINO
#include <Arduino.h>
#else
#include <inttypes.h>
typedef uint8_t byte;
#endif
BEGIN_MIDI_NAMESPACE
// -----------------------------------------------------------------------------
#define MIDI_CHANNEL_OMNI 0
#define MIDI_CHANNEL_OFF 17 // and over
#define MIDI_PITCHBEND_MIN -8192
#define MIDI_PITCHBEND_MAX 8191
/*! Receiving Active Sensing
*/
static const uint16_t ActiveSensingTimeout = 300;
// -----------------------------------------------------------------------------
// Type definitions
typedef byte StatusByte;
typedef byte DataByte;
typedef byte Channel;
typedef byte FilterMode;
// -----------------------------------------------------------------------------
// Errors
static const uint8_t ErrorParse = 0;
static const uint8_t ErrorActiveSensingTimeout = 1;
static const uint8_t WarningSplitSysEx = 2;
// -----------------------------------------------------------------------------
// Aliasing
using ErrorCallback = void (*)(int8_t);
using NoteOffCallback = void (*)(Channel channel, byte note, byte velocity);
using NoteOnCallback = void (*)(Channel channel, byte note, byte velocity);
using AfterTouchPolyCallback = void (*)(Channel channel, byte note, byte velocity);
using ControlChangeCallback = void (*)(Channel channel, byte, byte);
using ProgramChangeCallback = void (*)(Channel channel, byte);
using AfterTouchChannelCallback = void (*)(Channel channel, byte);
using PitchBendCallback = void (*)(Channel channel, int);
using SystemExclusiveCallback = void (*)(byte * array, unsigned size);
using TimeCodeQuarterFrameCallback = void (*)(byte data);
using SongPositionCallback = void (*)(unsigned beats);
using SongSelectCallback = void (*)(byte songnumber);
using TuneRequestCallback = void (*)(void);
using ClockCallback = void (*)(void);
using StartCallback = void (*)(void);
using TickCallback = void (*)(void);
using ContinueCallback = void (*)(void);
using StopCallback = void (*)(void);
using ActiveSensingCallback = void (*)(void);
using SystemResetCallback = void (*)(void);
// -----------------------------------------------------------------------------
/*! Enumeration of MIDI types */
enum MidiType: uint8_t
{
InvalidType = 0x00, ///< For notifying errors
NoteOff = 0x80, ///< Channel Message - Note Off
NoteOn = 0x90, ///< Channel Message - Note On
AfterTouchPoly = 0xA0, ///< Channel Message - Polyphonic AfterTouch
ControlChange = 0xB0, ///< Channel Message - Control Change / Channel Mode
ProgramChange = 0xC0, ///< Channel Message - Program Change
AfterTouchChannel = 0xD0, ///< Channel Message - Channel (monophonic) AfterTouch
PitchBend = 0xE0, ///< Channel Message - Pitch Bend
SystemExclusive = 0xF0, ///< System Exclusive
SystemExclusiveStart = SystemExclusive, ///< System Exclusive Start
TimeCodeQuarterFrame = 0xF1, ///< System Common - MIDI Time Code Quarter Frame
SongPosition = 0xF2, ///< System Common - Song Position Pointer
SongSelect = 0xF3, ///< System Common - Song Select
Undefined_F4 = 0xF4,
Undefined_F5 = 0xF5,
TuneRequest = 0xF6, ///< System Common - Tune Request
SystemExclusiveEnd = 0xF7, ///< System Exclusive End
Clock = 0xF8, ///< System Real Time - Timing Clock
Undefined_F9 = 0xF9,
Tick = Undefined_F9, ///< System Real Time - Timing Tick (1 tick = 10 milliseconds)
Start = 0xFA, ///< System Real Time - Start
Continue = 0xFB, ///< System Real Time - Continue
Stop = 0xFC, ///< System Real Time - Stop
Undefined_FD = 0xFD,
ActiveSensing = 0xFE, ///< System Real Time - Active Sensing
SystemReset = 0xFF, ///< System Real Time - System Reset
};
// -----------------------------------------------------------------------------
/*! Enumeration of Thru filter modes */
struct Thru
{
enum Mode
{
Off = 0, ///< Thru disabled (nothing passes through).
Full = 1, ///< Fully enabled Thru (every incoming message is sent back).
SameChannel = 2, ///< Only the messages on the Input Channel will be sent back.
DifferentChannel = 3, ///< All the messages but the ones on the Input Channel will be sent back.
};
};
// -----------------------------------------------------------------------------
/*! \brief Enumeration of Control Change command numbers.
See the detailed controllers numbers & description here:
http://www.somascape.org/midi/tech/spec.html#ctrlnums
*/
enum MidiControlChangeNumber: uint8_t
{
// High resolution Continuous Controllers MSB (+32 for LSB) ----------------
BankSelect = 0,
ModulationWheel = 1,
BreathController = 2,
// CC3 undefined
FootController = 4,
PortamentoTime = 5,
DataEntryMSB = 6,
ChannelVolume = 7,
Balance = 8,
// CC9 undefined
Pan = 10,
ExpressionController = 11,
EffectControl1 = 12,
EffectControl2 = 13,
// CC14 undefined
// CC15 undefined
GeneralPurposeController1 = 16,
GeneralPurposeController2 = 17,
GeneralPurposeController3 = 18,
GeneralPurposeController4 = 19,
DataEntryLSB = 38,
// Switches ----------------------------------------------------------------
Sustain = 64,
Portamento = 65,
Sostenuto = 66,
SoftPedal = 67,
Legato = 68,
Hold = 69,
// Low resolution continuous controllers -----------------------------------
SoundController1 = 70, ///< Synth: Sound Variation FX: Exciter On/Off
SoundController2 = 71, ///< Synth: Harmonic Content FX: Compressor On/Off
SoundController3 = 72, ///< Synth: Release Time FX: Distortion On/Off
SoundController4 = 73, ///< Synth: Attack Time FX: EQ On/Off
SoundController5 = 74, ///< Synth: Brightness FX: Expander On/Off
SoundController6 = 75, ///< Synth: Decay Time FX: Reverb On/Off
SoundController7 = 76, ///< Synth: Vibrato Rate FX: Delay On/Off
SoundController8 = 77, ///< Synth: Vibrato Depth FX: Pitch Transpose On/Off
SoundController9 = 78, ///< Synth: Vibrato Delay FX: Flange/Chorus On/Off
SoundController10 = 79, ///< Synth: Undefined FX: Special Effects On/Off
GeneralPurposeController5 = 80,
GeneralPurposeController6 = 81,
GeneralPurposeController7 = 82,
GeneralPurposeController8 = 83,
PortamentoControl = 84,
// CC85 to CC90 undefined
Effects1 = 91, ///< Reverb send level
Effects2 = 92, ///< Tremolo depth
Effects3 = 93, ///< Chorus send level
Effects4 = 94, ///< Celeste depth
Effects5 = 95, ///< Phaser depth
DataIncrement = 96,
DataDecrement = 97,
NRPNLSB = 98, ///< Non-Registered Parameter Number (LSB)
NRPNMSB = 99, ///< Non-Registered Parameter Number (MSB)
RPNLSB = 100, ///< Registered Parameter Number (LSB)
RPNMSB = 101, ///< Registered Parameter Number (MSB)
// Channel Mode messages ---------------------------------------------------
AllSoundOff = 120,
ResetAllControllers = 121,
LocalControl = 122,
AllNotesOff = 123,
OmniModeOff = 124,
OmniModeOn = 125,
MonoModeOn = 126,
PolyModeOn = 127
};
struct RPN
{
enum RegisteredParameterNumbers: uint16_t
{
PitchBendSensitivity = 0x0000,
ChannelFineTuning = 0x0001,
ChannelCoarseTuning = 0x0002,
SelectTuningProgram = 0x0003,
SelectTuningBank = 0x0004,
ModulationDepthRange = 0x0005,
NullFunction = (0x7f << 7) + 0x7f,
};
};
END_MIDI_NAMESPACE

View file

@ -0,0 +1,105 @@
/*!
* @file midi_Message.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino - Message struct definition
* @author Francois Best
* @date 11/06/14
* @license MIT - Copyright (c) 2015 Francois Best
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#include "midi_Namespace.h"
#include "midi_Defs.h"
#ifndef ARDUINO
#include <string.h>
#endif
BEGIN_MIDI_NAMESPACE
/*! The Message structure contains decoded data of a MIDI message
read from the serial port with read()
*/
template<unsigned SysExMaxSize>
struct Message
{
/*! Default constructor
\n Initializes the attributes with their default values.
*/
inline Message()
: channel(0)
, type(MIDI_NAMESPACE::InvalidType)
, data1(0)
, data2(0)
, valid(false)
{
memset(sysexArray, 0, sSysExMaxSize * sizeof(DataByte));
}
/*! The maximum size for the System Exclusive array.
*/
static const unsigned sSysExMaxSize = SysExMaxSize;
/*! The MIDI channel on which the message was recieved.
\n Value goes from 1 to 16.
*/
Channel channel;
/*! The type of the message
(see the MidiType enum for types reference)
*/
MidiType type;
/*! The first data byte.
\n Value goes from 0 to 127.
*/
DataByte data1;
/*! The second data byte.
If the message is only 2 bytes long, this one is null.
\n Value goes from 0 to 127.
*/
DataByte data2;
/*! System Exclusive dedicated byte array.
\n Array length is stocked on 16 bits,
in data1 (LSB) and data2 (MSB)
*/
DataByte sysexArray[sSysExMaxSize];
/*! This boolean indicates if the message is valid or not.
There is no channel consideration here,
validity means the message respects the MIDI norm.
*/
bool valid;
/*! Total Length of the message.
*/
unsigned length;
inline unsigned getSysExSize() const
{
const unsigned size = unsigned(data2) << 8 | data1;
return size > sSysExMaxSize ? sSysExMaxSize : size;
}
};
END_MIDI_NAMESPACE

View file

@ -0,0 +1,38 @@
/*!
* @file midi_Namespace.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino - Namespace declaration
* @author Francois Best
* @date 24/02/11
* @license MIT - Copyright (c) 2015 Francois Best
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#define MIDI_NAMESPACE midi
#define BEGIN_MIDI_NAMESPACE namespace MIDI_NAMESPACE {
#define END_MIDI_NAMESPACE }
#define USING_NAMESPACE_MIDI using namespace MIDI_NAMESPACE;
BEGIN_MIDI_NAMESPACE
END_MIDI_NAMESPACE

View file

@ -0,0 +1,51 @@
/*!
* @file midi_Platform.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino - Platform
* @license MIT - Copyright (c) 2015 Francois Best
* @author lathoub
* @date 22/03/20
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#include "midi_Defs.h"
BEGIN_MIDI_NAMESPACE
#if ARDUINO
// DefaultPlatform is the Arduino Platform
struct DefaultPlatform
{
static unsigned long now() { return ::millis(); };
};
#else
struct DefaultPlatform
{
static unsigned long now() { return 0; };
};
#endif
END_MIDI_NAMESPACE

View file

@ -0,0 +1,104 @@
/*!
* @file midi_Settings.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino - Settings
* @author Francois Best
* @date 24/02/11
* @license MIT - Copyright (c) 2015 Francois Best
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#include "midi_Defs.h"
BEGIN_MIDI_NAMESPACE
/*! \brief Default Settings for the MIDI Library.
To change the default settings, don't edit them there, create a subclass and
override the values in that subclass, then use the MIDI_CREATE_CUSTOM_INSTANCE
macro to create your instance. The settings you don't override will keep their
default value. Eg:
\code{.cpp}
struct MySettings : public midi::DefaultSettings
{
static const unsigned SysExMaxSize = 1024; // Accept SysEx messages up to 1024 bytes long.
};
MIDI_CREATE_CUSTOM_INSTANCE(HardwareSerial, Serial2, midi, MySettings);
\endcode
*/
struct DefaultSettings
{
/*! Running status enables short messages when sending multiple values
of the same type and channel.\n
Must be disabled to send USB MIDI messages to a computer
Warning: does not work with some hardware, enable with caution.
*/
static const bool UseRunningStatus = false;
/*! NoteOn with 0 velocity should be handled as NoteOf.\n
Set to true to get NoteOff events when receiving null-velocity NoteOn messages.\n
Set to false to get NoteOn events when receiving null-velocity NoteOn messages.
*/
static const bool HandleNullVelocityNoteOnAsNoteOff = true;
/*! Setting this to true will make MIDI.read parse only one byte of data for each
call when data is available. This can speed up your application if receiving
a lot of traffic, but might induce MIDI Thru and treatment latency.
*/
static const bool Use1ByteParsing = true;
/*! Maximum size of SysEx receivable. Decrease to save RAM if you don't expect
to receive SysEx, or adjust accordingly.
*/
static const unsigned SysExMaxSize = 128;
/*! Global switch to turn on/off sender ActiveSensing
Set to true to send ActiveSensing
Set to false will not send ActiveSensing message (will also save memory)
*/
static const bool UseSenderActiveSensing = false;
/*! Global switch to turn on/off receiver ActiveSensing
Set to true to check for message timeouts (via ErrorCallback)
Set to false will not check if chained device are still alive (if they use ActiveSensing) (will also save memory)
*/
static const bool UseReceiverActiveSensing = false;
/*! Active Sensing is intended to be sent
repeatedly by the sender to tell the receiver that a connection is alive. Use
of this message is optional. When initially received, the
receiver will expect to receive another Active Sensing
message each 300ms (max), and if it does not then it will
assume that the connection has been terminated. At
termination, the receiver will turn off all voices and return to
normal (non- active sensing) operation.
Typical value is 250 (ms) - an Active Sensing command is send every 250ms.
(All Roland devices send Active Sensing every 250ms)
Setting this field to 0 will disable sending MIDI active sensing.
*/
static const uint16_t SenderActiveSensingPeriodicity = 0;
};
END_MIDI_NAMESPACE

View file

@ -0,0 +1,125 @@
/*!
* @file serialMIDI.h
* Project Arduino MIDI Library
* @brief MIDI Library for the Arduino - Platform
* @license MIT - Copyright (c) 2015 Francois Best
* @author lathoub, Francois Best
* @date 22/03/20
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#pragma once
#include "midi_Namespace.h"
BEGIN_MIDI_NAMESPACE
struct DefaultSerialSettings
{
/*! Override the default MIDI baudrate to transmit over USB serial, to
a decoding program such as Hairless MIDI (set baudrate to 115200)\n
http://projectgus.github.io/hairless-midiserial/
*/
static const long BaudRate = 31250;
};
template <class SerialPort, class _Settings = DefaultSerialSettings>
class SerialMIDI
{
typedef _Settings Settings;
public:
SerialMIDI(SerialPort& inSerial)
: mSerial(inSerial)
{
};
public:
static const bool thruActivated = true;
void begin()
{
// Initialise the Serial port
#if defined(AVR_CAKE)
mSerial. template open<Settings::BaudRate>();
#else
mSerial.begin(Settings::BaudRate);
#endif
}
bool beginTransmission(MidiType)
{
return true;
};
void write(byte value)
{
mSerial.write(value);
};
void endTransmission()
{
};
byte read()
{
return mSerial.read();
};
unsigned available()
{
return mSerial.available();
};
private:
SerialPort& mSerial;
};
/*! \brief Create an instance of the library attached to a serial port.
You can use HardwareSerial or SoftwareSerial for the serial port.
Example: MIDI_CREATE_INSTANCE(HardwareSerial, Serial2, midi2);
Then call midi2.begin(), midi2.read() etc..
*/
#define MIDI_CREATE_INSTANCE(Type, SerialPort, Name) \
MIDI_NAMESPACE::SerialMIDI<Type> serial##Name(SerialPort);\
MIDI_NAMESPACE::MidiInterface<MIDI_NAMESPACE::SerialMIDI<Type>> Name((MIDI_NAMESPACE::SerialMIDI<Type>&)serial##Name);
#if defined(ARDUINO_SAM_DUE) || defined(USBCON) || defined(__MK20DX128__) || defined(__MK20DX256__) || defined(__MKL26Z64__)
// Leonardo, Due and other USB boards use Serial1 by default.
#define MIDI_CREATE_DEFAULT_INSTANCE() \
MIDI_CREATE_INSTANCE(HardwareSerial, Serial1, MIDI);
#else
/*! \brief Create an instance of the library with default name, serial port
and settings, for compatibility with sketches written with pre-v4.2 MIDI Lib,
or if you don't bother using custom names, serial port or settings.
*/
#define MIDI_CREATE_DEFAULT_INSTANCE() \
MIDI_CREATE_INSTANCE(HardwareSerial, Serial, MIDI);
#endif
/*! \brief Create an instance of the library attached to a serial port with
custom settings.
@see DefaultSettings
@see MIDI_CREATE_INSTANCE
*/
#define MIDI_CREATE_CUSTOM_INSTANCE(Type, SerialPort, Name, Settings) \
MIDI_NAMESPACE::SerialMIDI<Type, Settings> serial##Name(SerialPort);\
MIDI_NAMESPACE::MidiInterface<MIDI_NAMESPACE::SerialMIDI<Type, Settings>> Name((MIDI_NAMESPACE::SerialMIDI<Type, Settings>&)serial##Name);
END_MIDI_NAMESPACE

View file

@ -0,0 +1,84 @@
#include "../shared/defs.h"
#if ENABLE_SKETCH
#include "./ui_state.h"
#include "shared/Painter.h"
#include "fl/dbg.h"
#include <Arduino.h>
//#define UI_V1 // Based off the old midi shield with hand assmebled buttons.
#define UI_V2 // Based on a new midi shield with buttons. https://learn.sparkfun.com/tutorials/midi-shield-hookup-guide
#define UI_DBG
#ifdef __STM32F1__
// Missing A-type pins, just use digital pins mapped to analog.
#define PIN_POT_COLOR_SENSOR D3
#define PIN_POT_VEL_SENSOR D4
#else
#define PIN_POT_COLOR_SENSOR A3
#define PIN_POT_VEL_SENSOR A4
#endif
#define PIN_VIS_SELECT 2
#define PIN_COLOR_SELECT 4
Potentiometer velocity_pot(PIN_POT_VEL_SENSOR);
Potentiometer color_pot(PIN_POT_COLOR_SENSOR);
float read_color_selector() {
return color_pot.Read();
}
float read_velocity_bias() {
return velocity_pot.Read();
}
//DigitalButton custom_notecolor_select(4);
ColorSelector color_selector(PIN_COLOR_SELECT);
CountingButton vis_selector(PIN_VIS_SELECT);
void ui_init() {
}
ui_state ui_update(uint32_t now_ms, uint32_t delta_ms) {
ui_state out;
vis_selector.Update(now_ms);
color_selector.Update();
int32_t curr_val = vis_selector.curr_val();
FASTLED_DBG("curr_val: " << curr_val);
out.color_scheme = color_selector.curr_val();
//bool notecolor_on = custom_notecolor_select.Read();
//Serial.print("color selector: "); Serial.println(out.color_scheme);
//float velocity = read_velocity_bias();
//float color_selector = read_color_selector();
//Serial.print("velocity: "); Serial.print(velocity); Serial.print(", color_selector: "); Serial.print(color_selector);
//if (notecolor_on) {
// Serial.print(", notecolor_on: "); Serial.print(notecolor_on);
//}
//Serial.print("color_scheme: "); Serial.print(out.color_scheme); Serial.print(", vis selector: "); Serial.print(curr_val);
//Serial.println("");
//Serial.print("curr_val: "); Serial.print(curr_val);// Serial.print(", button state: "); Serial.println(vis_selector.button_.curr_val());;
out.which_visualizer = static_cast<Painter::VisState>(curr_val % Painter::kNumVisStates);
return out;
}
#endif // ENABLE_SKETCH

View file

@ -0,0 +1,21 @@
#pragma once
#include <Arduino.h>
#include "buttons.h"
extern ColorSelector color_selector;
extern CountingButton vis_selector;
struct ui_state {
ui_state() { memset(this, 0, sizeof(*this)); }
int which_visualizer;
int color_scheme;
//float color_wheel_pos;
//float velocity_bias_pos; // default to 1.0f for buttons missing velocity.
};
void ui_init();
ui_state ui_update(uint32_t now_ms, uint32_t delta_ms);

View file

@ -0,0 +1,75 @@
// Copyleft (c) 2012, Zach Vorhies
// Public domain, no rights reserved.
#ifndef APPROXIMATING_FUNCTION_H_
#define APPROXIMATING_FUNCTION_H_
//#include <Arduino.h>
template<typename X, typename Y>
const Y MapT(const X& x,
const X& x1, const X& x2,
const Y& y1, const Y& y2) {
Y return_val = static_cast<Y>((x - x1) * (y2 - y1) / (x2 - x1) + y1);
return return_val;
}
template <typename KeyT, typename ValT>
struct InterpData {
InterpData(const KeyT& k, const ValT& v) : key(k), val(v) {}
KeyT key;
ValT val;
};
template <typename KeyT, typename ValT>
inline void SelectInterpPoints(const KeyT& k,
const InterpData<KeyT, ValT>* array,
const int n, // Number of elements in array.
int* dest_lower_bound,
int* dest_upper_bound) {
if (n < 1) {
*dest_lower_bound = *dest_upper_bound = -1;
return;
}
if (k < array[0].key) {
*dest_lower_bound = *dest_upper_bound = 0;
return;
}
for (int i = 0; i < n - 1; ++i) {
const InterpData<KeyT, ValT>& curr = array[i];
const InterpData<KeyT, ValT>& next = array[i+1];
if (curr.key <= k && k <= next.key) {
*dest_lower_bound = i;
*dest_upper_bound = i+1;
return;
}
}
*dest_lower_bound = n - 1;
*dest_upper_bound = n - 1;
}
template <typename KeyT, typename ValT>
inline ValT Interp(const KeyT& k, const InterpData<KeyT, ValT>* array, const int n) {
if (n < 1) {
return ValT(0);
}
int low_idx = -1;
int high_idx = -1;
SelectInterpPoints<KeyT, ValT>(k, array, n, &low_idx, &high_idx);
if (low_idx == high_idx) {
return array[low_idx].val;
}
const InterpData<KeyT, ValT>* curr = &array[low_idx];
const InterpData<KeyT, ValT>* next = &array[high_idx];
// map(...) only works on integers. MapT<> is the same thing but it works on
// all datatypes.
return MapT<KeyT, ValT>(k, curr->key, next->key, curr->val, next->val);
}
#endif // APPROXIMATING_FUNCTION_H_

View file

@ -0,0 +1,213 @@
#include <Arduino.h>
#include "./util.h"
#include "./color_mapper.h"
#include "./Keyboard.h"
#include "./dprint.h"
Key::Key() : on_(false), sustained_(false), sustain_pedal_on_(false),
velocity_(0), idx_(0), event_time_(0) {}
void Key::SetOn(uint8_t vel, const ColorHSV& color, uint32_t now_ms) {
if (curr_color_.v_ < color.v_) { // if the new color is "brighter" than the current color.
velocity_ = vel;
curr_color_ = color;
event_time_ = now_ms;
}
orig_color_ = curr_color_;
event_time_ = now_ms;
on_ = true;
}
void Key::SetOff(uint32_t now_ms) {
orig_color_ = curr_color_;
on_ = false;
event_time_ = now_ms;
sustained_ = false;
}
void Key::SetSustained() {
sustained_ = true;
}
void Key::Update(uint32_t now_ms, uint32_t delta_ms, bool sustain_pedal_on) {
if (sustained_ && !sustain_pedal_on) {
sustained_ = false;
SetOff(now_ms);
}
sustain_pedal_on_ = sustain_pedal_on;
UpdateIntensity(now_ms, delta_ms);
}
float Key::VelocityFactor() const { return velocity_ / 127.f; }
float Key::CalcAttackDecayFactor(uint32_t delta_ms) const {
bool dampened_key = (idx_ < kFirstNoteNoDamp);
float active_lights_factor = ::CalcDecayFactor(
sustain_pedal_on_,
on_,
idx_,
VelocityFactor(),
dampened_key,
delta_ms);
return active_lights_factor;
}
float Key::AttackRemapFactor(uint32_t now_ms) {
if (on_) {
return ::AttackRemapFactor(now_ms - event_time_);
} else {
return 1.0;
}
}
float Key::IntensityFactor() const {
return intensity_;
}
void Key::UpdateIntensity(uint32_t now_ms, uint32_t delta_ms) {
if (on_) {
// Intensity can be calculated by a
float intensity =
CalcAttackDecayFactor(now_ms - event_time_) *
VelocityFactor() *
AttackRemapFactor(now_ms);
// This is FRAME RATE DEPENDENT FUNCTION!!!!
// CHANGE TO TIME INDEPENDENT BEFORE SUBMIT.
intensity_ = (.9f * intensity) + (.1f * intensity_);
} else if(intensity_ > 0.0f) { // major cpu hotspot.
if (sustain_pedal_on_) {
float delta_s = delta_ms / 1000.f;
if (intensity_ > .5f) {
const float kRate = .12f;
// Time flexible decay function. Stays accurate
// even as the frame rate changes.
// Formula: A = Pe^(r*t)
intensity_ = intensity_ * exp(-delta_s * kRate);
} else {
// Quickly fade at the bottom end of the transition.
const float kRate = .05f;
intensity_ -= delta_s * kRate;
}
} else {
float delta_s = delta_ms / 1000.f;
if (intensity_ > .5f) {
const float kRate = 12.0f;
// Time flexible decay function. Stays accurate
// even as the frame rate changes.
// Formula: A = Pe^(r*t)
intensity_ = intensity_ * exp(-delta_s * kRate);
} else {
// Quickly fade at the bottom end of the transition.
const float kRate = 2.0f;
intensity_ -= delta_s * kRate;
}
}
intensity_ = constrain(intensity_, 0.0f, 1.0f);
}
}
void KeyboardState::HandleNoteOn(uint8_t midi_note, uint8_t velocity, int color_selector_value, uint32_t now_ms) {
if (0 == velocity) {
// Some keyboards signify "NoteOff" with a velocity of zero.
HandleNoteOff(midi_note, velocity, now_ms);
return;
}
#ifdef DEBUG_KEYBOARD
dprint("HandleNoteOn:");
dprint("midi_note = ");
dprint(midi_note);
dprint(", velocity = ");
dprintln(velocity);
#endif
float brightness = ToBrightness(velocity);
dprint("brightness: "); dprintln(brightness);
ColorHSV pixel_color_hsv = SelectColor(midi_note, brightness,
color_selector_value);
// TODO: Give a key access to the Keyboard owner, therefore it could inspect the
// sustained variable instead of passing it here.
Key* key = GetKey(midi_note);
dprint("key indx: "); dprintln(key->idx_);
key->SetOn(velocity, pixel_color_hsv, now_ms);
}
void KeyboardState::HandleNoteOff(uint8_t midi_note, uint8_t /*velocity*/, uint32_t now_ms) {
#ifdef DEBUG_KEYBOARD
dprint("HandleNoteOff:");
dprint("midi_note = ");
dprint(midi_note);
dprint(", velocity = ");
dprintln(velocity);
#endif
Key* key = GetKey(midi_note);
if (sustain_pedal_) {
key->SetSustained();
} else {
key->SetOff(now_ms);
}
}
void KeyboardState::HandleControlChange(uint8_t d1, uint8_t d2) {
// Note that d1 and d2 just mean "data-1" and "data-2".
// TODO: Find out what d1 and d2 should be called.
const bool foot_pedal = (d1 == kMidiFootPedal);
if (foot_pedal) {
// Spec says that if that values 0-63 are OFF, otherwise ON.
sustain_pedal_ = (d2 >= 64);
}
}
void KeyboardState::HandleAfterTouchPoly(uint8_t note, uint8_t pressure) {
dprintln("HandleAfterTouchPoly");
dprint("\tnote = ");
dprint(note);
dprint(", pressure = ");
dprintln(pressure);
}
KeyboardState::KeyboardState() : sustain_pedal_(false), keys_() {
for (int i = 0; i < kNumKeys; ++i) {
keys_[i].idx_ = i;
}
}
void KeyboardState::Update(uint32_t now_ms, uint32_t delta_ms) {
for (int i = 0; i < kNumKeys; ++i) {
keys_[i].Update(now_ms, delta_ms, sustain_pedal_);
}
}
uint8_t KeyboardState::KeyIndex(int midi_pitch) {
//return constrain(midi_pitch, 21, 108) - 21;
return ::KeyIndex(midi_pitch);
}
Key* KeyboardState::GetKey(int midi_pitch) {
uint8_t idx = KeyIndex(midi_pitch);
return &keys_[idx];
}

View file

@ -0,0 +1,108 @@
#ifndef KEYBOARD_H_
#define KEYBOARD_H_
#include <Arduino.h>
#include "color.h"
#include "./util.h"
class KeyboardState;
// // NOTE: AS OF NOV-12-2013 we've disable all of the auto-sustained
// notes in the high end of the keyboard.
enum {
// kFirstNoteNoDamp = 69, // First key that has no dampener
kFirstNoteNoDamp = 89, // DISABLED - Greater than last key.
};
inline uint8_t KeyIndex(int midi_pitch) {
return constrain(midi_pitch, 21, 108) - 21;
}
struct Key {
Key();
void SetOn(uint8_t vel, const ColorHSV& color, uint32_t now_ms);
void SetOff(uint32_t now_ms);
void SetSustained();
void Update(uint32_t now_ms, uint32_t delta_ms, bool sustain_pedal_on);
float VelocityFactor() const;
float CalcAttackDecayFactor(uint32_t delta_ms) const;
float AttackRemapFactor(uint32_t now_ms);
float IntensityFactor() const;
void UpdateIntensity(uint32_t now_ms, uint32_t delta_ms);
bool on_; // Max number of MIDI keys.
bool sustained_;
bool sustain_pedal_on_;
uint8_t velocity_;
int idx_;
unsigned long event_time_;
// 0.0 -> 1.0 How intense the key is, used for light sequences to represent
// 0 -> 0% of lights on to 1.0 -> 100% of lights on. this is a smooth
// value through time.
float intensity_;
ColorHSV orig_color_;
ColorHSV curr_color_;
};
// Interface into the Keyboard state.
// Convenience class which holds all the keys in the keyboard. Also
// has a convenience function will allows one to map the midi notes
// (21-108) to the midi keys (0-88).
class KeyboardState {
public:
// NOTE: AS OF NOV-12-2013 we've disable all of the auto-sustained
// notes in the high end of the keyboard.
//enum {
// kFirstNoteNoDamp = 69, // First key that has no dampener
// kFirstNoteNoDamp = 89, // DISABLED - Greater than last key.
//};
KeyboardState();
void Update(uint32_t now_ms, uint32_t delta_ms);
////////////////////////////////////
// Called when the note is pressed.
// Input:
// channel - Ignored.
// midi_note - Value between 21-108 which maps to the keyboard keys.
// velocity - Value between 0-127
void HandleNoteOn(uint8_t midi_note, uint8_t velocity, int color_selector_value, uint32_t now_ms);
/////////////////////////////////////////////////////////
// Called when the note is released.
// Input:
// channel - Ignored.
// midi_note - Value between 21-108 which maps to the keyboard keys.
// velocity - Value between 0-127
void HandleNoteOff(uint8_t midi_note, uint8_t velocity, uint32_t now_ms);
/////////////////////////////////////////////////////////
// This is uninmplemented because the test keyboard didn't
// have this functionality. Right now the only thing it does is
// print out that the key was pressed.
void HandleAfterTouchPoly(uint8_t note, uint8_t pressure);
/////////////////////////////////////////////////////////
// Detects whether the foot pedal has been touched.
void HandleControlChange(uint8_t d1, uint8_t d2);
static uint8_t KeyIndex(int midi_pitch);
Key* GetKey(int midi_pitch);
static const int kNumKeys = 88;
bool sustain_pedal_;
Key keys_[kNumKeys];
};
#endif // KEYBOARD_H_

View file

@ -0,0 +1,485 @@
#include <Arduino.h>
#include "./Painter.h"
#include "./led_layout_array.h"
#include "./dprint.h"
#include "./Keyboard.h"
#include "fl/math_macros.h"
#include "fl/math.h"
#include "fl/warn.h"
namespace {
float LuminanceDecay(float time) {
typedef InterpData<float, float> Datum;
static const Datum kData[] = {
Datum(0, 0),
Datum(1, 0),
Datum(10, 0),
Datum(47, 60),
Datum(120, 100),
Datum(230, 160),
Datum(250, 255),
Datum(254, 255),
Datum(255, 64),
};
const float key = time * 255.f;
static const int n = sizeof(kData) / sizeof(kData[0]);
float approx_val = Interp(key, kData, n);
static const float k = (1.0f / 255.f);
const float out = approx_val * k;
return out;
}
float CalcLuminance(float time_delta_ms,
bool sustain_pedal_on,
const Key& key,
int key_idx) {
if (key.curr_color_.v_ <= 0.0) {
return 0.0;
}
const bool dampened_key = (key_idx < kFirstNoteNoDamp);
const float decay_factor = CalcDecayFactor(sustain_pedal_on,
key.on_,
key_idx,
key.velocity_ * (1.f/127.f), // Normalizing
dampened_key,
time_delta_ms);
if (key.on_) {
//const float brigthness_factor = sin(key.orig_color_.v_ * PI / 2.0);
float brigthness_factor = 0.0f;
if (kUseLedCurtin) {
brigthness_factor = sqrt(sqrt(key.orig_color_.v_));
} else {
//brigthness_factor = key.orig_color_.v_ * key.orig_color_.v_;
brigthness_factor = key.orig_color_.v_;
}
return LuminanceDecay(decay_factor) * brigthness_factor;
//return 1.0f;
} else {
return decay_factor * key.orig_color_.v_;
}
}
float CalcSaturation(float time_delta_ms, const ColorHSV& color, bool key_on) {
if (color.v_ <= 0.0) {
return color.s_;
}
if (!key_on) {
return 1.0f;
}
static const float kDefaultSaturationTime = 0.05f * 1000.f;
// At time = 0.0 the saturation_factor will be at 0.0 and then transition to 1.0
float saturation_factor = mapf(time_delta_ms,
0.0f, kDefaultSaturationTime,
0.0f, 1.0f);
// As time increases the saturation factor will continue
// to grow past 1.0. We use min to clamp it back to 1.0.
saturation_factor = MIN(1.0f, saturation_factor);
// TODO - make the saturation interpolate between the original
// color and the unsaturated state.
return saturation_factor;
}
} // namespace.
void Painter::Paint(uint32_t now_ms,
uint32_t delta_ms,
VisState vis_state,
KeyboardState* keyboard,
LedRopeInterface* light_rope) {
for (int i = 0; i < KeyboardState::kNumKeys; ++i) {
Key& key = keyboard->keys_[i];
const float time_delta_ms = static_cast<float>(now_ms - key.event_time_);
const float lum = CalcLuminance(time_delta_ms, keyboard->sustain_pedal_, key, i);
const float sat = CalcSaturation(time_delta_ms, key.curr_color_, key.on_);
//if (key.idx_ == 56) {
// dprint("lum: "); dprint(lum*255.f); dprint(" sat:"); dprintln(sat*255.f);
//}
key.curr_color_.v_ = lum;
key.curr_color_.s_ = sat;
// Removing this line breaks one of the visualizers...
// TODO: Figure out a cleaner solution.
light_rope->Set(i, key.curr_color_.ToRGB());
}
LedColumns led_columns = LedLayoutArray();
switch (vis_state) {
case Painter::kBlockNote: {
light_rope->DrawSequentialRepeat(kNumLightsPerNote);
break;
}
case Painter::kColumnNote: {
light_rope->DrawRepeat(led_columns.array, kNumKeys);
break;
}
case Painter::kVUNote: {
PaintVuNotes(now_ms, *keyboard, led_columns.array, kNumKeys, light_rope);
break;
}
case Painter::kVUMidNote: {
PaintVuMidNotesFade(delta_ms, *keyboard, led_columns.array, kNumKeys, light_rope);
break;
}
case Painter::kVegas: { // aka "vegas mode?"
VegasVisualizer(*keyboard, led_columns.array, kNumKeys, light_rope);
break;
}
case Painter::kBrightSurprise: {
PaintBrightSurprise(*keyboard, led_columns.array, kNumKeys, light_rope);
break;
}
case Painter::kVUSpaceInvaders: {
PaintVuSpaceInvaders(now_ms, *keyboard, led_columns.array, kNumKeys, light_rope);
break;
}
default:
dprint("Unknown mode: "); dprint(vis_state); dprint(".\n");
break;
}
}
void Painter::PaintVuNotes(uint32_t /*now_ms*/,
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope) {
FASTLED_WARN("\n\n############## VU NOTES ################\n\n");
led_rope->RawBeginDraw();
for (int i = 0; i < led_column_table_length; ++i) {
const Key& key = keyboard.keys_[i];
// Map the white keys to the bottom and the black keys to the top.
bool black_key = false;
switch (key.idx_ % 12) {
case 1:
case 4:
case 6:
case 9:
case 11:
black_key = true;
break;
}
const int pixel_count = led_column_table[i];
const int draw_pixel_count = ceil(pixel_count * sqrt(key.curr_color_.v_));
const int black_pixel_count = pixel_count - draw_pixel_count;
const Color3i& c = *led_rope->GetIterator(i);
const bool reverse_correct = black_key == (key.idx_ % 2);
if (reverse_correct) {
for (int j = 0; j < draw_pixel_count; ++j) {
if (j < draw_pixel_count - 1) {
led_rope->RawDrawPixel(c);
} else {
// Last pixel.
ColorHSV hsv(random(512) / 512.f, random(512) / 512.f, 1.0);
led_rope->RawDrawPixel(hsv.ToRGB());
}
}
for (int j = 0; j < black_pixel_count; ++j) {
led_rope->RawDrawPixel(Color3i::Black());
}
} else {
for (int j = 0; j < black_pixel_count; ++j) {
led_rope->RawDrawPixel(Color3i::Black());
}
for (int j = draw_pixel_count - 1; j >= 0; --j) {
if (j < draw_pixel_count - 1) {
led_rope->RawDrawPixel(c);
} else {
// Last pixel.
ColorHSV hsv(random(512) / 512.f, random(512) / 512.f, 1.0);
led_rope->RawDrawPixel(hsv.ToRGB());
}
}
}
}
led_rope->RawCommitDraw();
}
void Painter::PaintVuMidNotesFade(uint32_t /*delta_ms*/,
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope) {
FASTLED_WARN("\n\n############## VU MID NOTES FADE ################\n\n");
struct DrawPoints {
int n_black0;
int n_fade0;
int n_fill;
int n_fade1;
int n_black1;
float fade_factor; // 0->1.0
float SumBrightness() const {
float out = 0;
out += n_fill;
out += (fade_factor * n_fade0);
out += (fade_factor * n_fade1);
return out;
}
};
// Generator for the DrawPoints struct above.
// n_led: How many led's there are in total.
// factor: 0->1, indicates % of led's "on".
struct F {
static DrawPoints Generate(int n_led, float factor) {
DrawPoints out;
memset(&out, 0, sizeof(out));
if (n_led == 0 || factor == 0.0f) {
out.n_black0 = n_led;
return out;
}
const int is_odd = (n_led % 2);
const int n_half_lights = n_led / 2 + is_odd;
const float f_half_fill = n_half_lights * factor;
const int n_half_fill = static_cast<int>(f_half_fill); // Truncates float.
float fade_pix_perc = f_half_fill - static_cast<float>(n_half_fill);
int n_fade_pix = fade_pix_perc < 1.0f;
if (n_half_fill == 0) {
n_fade_pix = 1;
}
int n_half_black = n_half_lights - n_half_fill - n_fade_pix;
int n_fill_pix = 0;
if (n_half_fill > 0) {
n_fill_pix = n_half_fill * 2 + (is_odd ? -1 : 0);
}
out.n_black0 = n_half_black;
out.n_fade0 = n_fade_pix;
out.n_fill = n_fill_pix;
out.n_fade1 = n_fade_pix;
if (!n_fill_pix && is_odd) {
out.n_fade1 = 0;
}
out.n_black1 = n_half_black;
out.fade_factor = fade_pix_perc;
return out;
}
};
led_rope->RawBeginDraw();
for (int i = 0; i < led_column_table_length; ++i) {
const Key& key = keyboard.keys_[i];
float active_lights_factor = key.IntensityFactor();
//if (key.curr_color_.v_ <= 0.f) {
// active_lights_factor = 0.0;
//}
const int n_led = led_column_table[i];
if (active_lights_factor > 0.0f) {
DrawPoints dp = F::Generate(n_led, active_lights_factor);
ColorHSV hsv = key.curr_color_;
hsv.v_ = 1.0;
Color3i color = hsv.ToRGB();
// Now figure out optional fade color
Color3i fade_col;
ColorHSV c = key.curr_color_;
c.v_ = dp.fade_factor;
fade_col = c.ToRGB();
// Output to graphics.
led_rope->RawDrawPixels(Color3i::Black(), dp.n_black0);
led_rope->RawDrawPixels(fade_col, dp.n_fade0);
led_rope->RawDrawPixels(color, dp.n_fill);
led_rope->RawDrawPixels(fade_col, dp.n_fade1);
led_rope->RawDrawPixels(Color3i::Black(), dp.n_black1);
#ifdef DEBUG_PAINTER
if (active_lights_factor > 0.0) {
int total_lights_on = dp.SumBrightness();
//dprint("total_lights_on: "); dprint(total_lights_on);
//dprint(", total lights written: "); dprintln(total_lights_on + dp.n_black0 + dp.n_black1);
//float total = (dp.n_fade0 * dp.fade_factor) + (dp.n_fade1 * dp.fade_factor) + static_cast<float>(dp.n_fill);
#define P(X) dprint(", "#X ": "); dprint(X);
//dprint("active_lights_factor: "); dprintln(active_lights_factor);
//P(dp.n_black0); P(dp.n_fade0); P(dp.n_fill); P(dp.n_fade1); P(dp.n_black1); P(dp.fade_factor);
P(total_lights_on);
P(active_lights_factor);
//P(total);
dprintln("");
}
#endif
} else {
led_rope->RawDrawPixels(Color3i::Black(), n_led);
}
}
led_rope->RawCommitDraw();
}
void Painter::VegasVisualizer(const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope) {
led_rope->RawBeginDraw();
uint32_t skipped_lights = 0;
for (int i = 0; i < led_column_table_length; ++i) {
const Key& key = keyboard.keys_[i];
uint32_t painted_lights = 0;
// % of lights that are active.
const float active_lights_factor = led_column_table[i] * sqrt(key.curr_color_.v_);
const float inactive_lights_factor = 1.0f - active_lights_factor;
const float taper_point_1 = inactive_lights_factor / 2.0f;
const float taper_point_2 = taper_point_1 + active_lights_factor;
const int taper_idx_1 = static_cast<int>(floor(taper_point_1 * led_column_table[i]));
const int taper_idx_2 = static_cast<int>(floor(taper_point_2 * led_column_table[i]));
const Color3i c = key.curr_color_.ToRGB();
for (int i = 0; i < taper_idx_1 / 2; ++i) {
led_rope->RawDrawPixel(Color3i::Black());
painted_lights++;
}
int length = taper_idx_2 - taper_idx_1;
for (int i = 0; i < min(200, length); ++i) {
led_rope->RawDrawPixel(c);
painted_lights++;
}
length = led_column_table[i] - taper_idx_2;
for (int i = 0; i < length; ++i) {
led_rope->RawDrawPixel(Color3i::Black());
painted_lights++;
}
skipped_lights += MAX(0, static_cast<int32_t>(led_column_table[i]) - static_cast<int32_t>(painted_lights));
}
for (uint32_t i = 0; i < skipped_lights; ++i) {
led_rope->RawDrawPixel(Color3i::Black());
}
led_rope->RawCommitDraw();
}
void Painter::PaintBrightSurprise(
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope) {
led_rope->RawBeginDraw();
int total_counted = 0;
float r, g, b;
r = g = b = 0;
for (int i = 0; i < KeyboardState::kNumKeys; ++i) {
const Key& key = keyboard.keys_[i];
if (key.curr_color_.v_ > 0.0f) {
const Color3i rgb = key.curr_color_.ToRGB();
r += rgb.r_;
g += rgb.g_;
b += rgb.b_;
++total_counted;
}
}
float denom = total_counted ? total_counted : 1;
r /= denom;
g /= denom;
b /= denom;
const Color3i rgb(r, g, b);
for (int i = 0; i < led_column_table_length; ++i) {
const int n = led_column_table[i];
for (int i = 0; i < n; ++i) {
led_rope->RawDrawPixel(rgb);
}
}
led_rope->RawCommitDraw();
}
void Painter::PaintVuSpaceInvaders(uint32_t /*now_ms*/,
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope) {
led_rope->RawBeginDraw();
Color3i black = Color3i::Black();
for (int i = 0; i < led_column_table_length; ++i) {
const Key& key = keyboard.keys_[i];
const int pixel_count = led_column_table[i];
const int draw_pixel_count = ceil(pixel_count * sqrt(key.curr_color_.v_));
const int black_pixel_count = pixel_count - draw_pixel_count;
// If i is even
if (i % 2 == 0) {
for (int j = 0; j < black_pixel_count; ++j) {
led_rope->RawDrawPixel(*led_rope->GetIterator(i));
}
for (int j = 0; j < draw_pixel_count; ++j) {
led_rope->RawDrawPixel(black);
}
} else {
for (int j = 0; j < draw_pixel_count; ++j) {
led_rope->RawDrawPixel(black);
}
for (int j = 0; j < black_pixel_count; ++j) {
led_rope->RawDrawPixel(*led_rope->GetIterator(i));
}
}
}
led_rope->RawCommitDraw();
}

View file

@ -0,0 +1,58 @@
#ifndef PAINTER_H
#define PAINTER_H
#include "./Keyboard.h"
#include "./ApproximatingFunction.h"
#include "./util.h"
#include "./settings.h"
#include "./led_rope_interface.h"
struct Painter {
enum VisState {
kVUMidNote = 0,
kColumnNote,
kBlockNote,
kVUNote,
kVUSpaceInvaders,
kVegas,
kBrightSurprise,
kNumVisStates,
};
////////////////////////////////////////////////////
static void Paint(uint32_t now_ms,
uint32_t delta_ms,
VisState vis_state,
KeyboardState* keyboard,
LedRopeInterface* light_rope);
private:
static void PaintVuNotes(uint32_t now_ms,
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope);
static void PaintVuMidNotesFade(uint32_t delta_ms,
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope);
// This is a crazy effect, lets keep this around.
static void VegasVisualizer(const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope);
static void PaintBrightSurprise(const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope);
static void PaintVuSpaceInvaders(uint32_t now_ms,
const KeyboardState& keyboard,
const int* led_column_table, int led_column_table_length,
LedRopeInterface* led_rope);
};
#endif // PAINTER_H

View file

@ -0,0 +1,151 @@
#include <Arduino.h>
#include "./color.h"
#include "./util.h"
///////////////////////////////////////////////////////////////////////////////
void Color3i::Mul(const Color3i& other_color) {
int r = r_;
int g = g_;
int b = b_;
r = r * int(other_color.r_) / 255;
g = g * int(other_color.g_) / 255;
b = b * int(other_color.b_) / 255;
Set(r, g, b);
}
///////////////////////////////////////////////////////////////////////////////
void Color3i::Mulf(float scale) {
const int s = static_cast<int>(scale * 255.0f);
int r = static_cast<int>(r_) * s / 255;
int g = static_cast<int>(g_) * s / 255;
int b = static_cast<int>(b_) * s / 255;
Set(r, g, b);
}
///////////////////////////////////////////////////////////////////////////////
void Color3i::Sub(const Color3i& color) {
if (r_ < color.r_) r_ = 0;
else r_ -= color.r_;
if (g_ < color.g_) g_ = 0;
else g_ -= color.g_;
if (b_ < color.b_) b_ = 0;
else b_ -= color.b_;
}
///////////////////////////////////////////////////////////////////////////////
void Color3i::Add(const Color3i& color) {
if ((255 - r_) < color.r_) r_ = 255;
else r_ += color.r_;
if ((255 - g_) < color.g_) g_ = 255;
else g_ += color.g_;
if ((255 - b_) < color.b_) b_ = 255;
else b_ += color.b_;
}
///////////////////////////////////////////////////////////////////////////////
uint8_t Color3i::Get(int rgb_index) const {
const uint8_t* rgb = At(rgb_index);
return rgb ? *rgb : 0;
}
///////////////////////////////////////////////////////////////////////////////
void Color3i::Set(int rgb_index, uint8_t val) {
uint8_t* rgb = At(rgb_index);
if (rgb) {
*rgb = val;
}
}
///////////////////////////////////////////////////////////////////////////////
void Color3i::Interpolate(const Color3i& other_color, float t) {
if (0.0f >= t) {
Set(other_color);
} else if (1.0f <= t) {
return;
}
Color3i new_color = other_color;
new_color.Mul(1.0f - t);
this->Mul(t);
this->Add(new_color);
}
///////////////////////////////////////////////////////////////////////////////
uint8_t* Color3i::At(int rgb_index) {
switch(rgb_index) {
case 0: return &r_;
case 1: return &g_;
case 2: return &b_;
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
const uint8_t* Color3i::At(int rgb_index) const {
switch(rgb_index) {
case 0: return &r_;
case 1: return &g_;
case 2: return &b_;
}
return NULL;
}
///////////////////////////////////////////////////////////////////////////////
void ColorHSV::FromRGB(const Color3i& rgb) {
typedef double FloatT;
FloatT r = (FloatT) rgb.r_/255.f;
FloatT g = (FloatT) rgb.g_/255.f;
FloatT b = (FloatT) rgb.b_/255.f;
FloatT max_rgb = max(r, max(g, b));
FloatT min_rgb = min(r, min(g, b));
v_ = max_rgb;
FloatT d = max_rgb - min_rgb;
s_ = max_rgb == 0 ? 0 : d / max_rgb;
if (max_rgb == min_rgb) {
h_ = 0; // achromatic
} else {
if (max_rgb == r) {
h_ = (g - b) / d + (g < b ? 6 : 0);
} else if (max_rgb == g) {
h_ = (b - r) / d + 2;
} else if (max_rgb == b) {
h_ = (r - g) / d + 4;
}
h_ /= 6;
}
}
///////////////////////////////////////////////////////////////////////////////
Color3i ColorHSV::ToRGB() const {
typedef double FloatT;
FloatT r = 0;
FloatT g = 0;
FloatT b = 0;
int i = int(h_ * 6);
FloatT f = h_ * 6.0 - static_cast<FloatT>(i);
FloatT p = v_ * (1.0 - s_);
FloatT q = v_ * (1.0 - f * s_);
FloatT t = v_ * (1.0 - (1.0 - f) * s_);
switch(i % 6){
case 0: r = v_, g = t, b = p; break;
case 1: r = q, g = v_, b = p; break;
case 2: r = p, g = v_, b = t; break;
case 3: r = p, g = q, b = v_; break;
case 4: r = t, g = p, b = v_; break;
case 5: r = v_, g = p, b = q; break;
}
return Color3i(round(r * 255), round(g * 255), round(b * 255));
}

View file

@ -0,0 +1,102 @@
#ifndef COLOR_H_
#define COLOR_H_
#include <stdint.h>
struct Color3i {
static Color3i Black() { return Color3i(0x0, 0x0, 0x0); }
static Color3i White() { return Color3i(0xff, 0xff, 0xff); }
static Color3i Red() { return Color3i(0xff, 0x00, 0x00); }
static Color3i Orange() { return Color3i(0xff, 0xff / 2,00); }
static Color3i Yellow() { return Color3i(0xff, 0xff,00); }
static Color3i Green() { return Color3i(0x00, 0xff, 0x00); }
static Color3i Cyan() { return Color3i(0x00, 0xff, 0xff); }
static Color3i Blue() { return Color3i(0x00, 0x00, 0xff); }
Color3i(uint8_t r, uint8_t g, uint8_t b) { Set(r,g,b); }
Color3i() { Set(0xff, 0xff, 0xff); }
Color3i(const Color3i& other) { Set(other); }
void Set(uint8_t r, uint8_t g, uint8_t b) { r_ = r; g_ = g; b_ = b; }
void Set(const Color3i& c) { Set(c.r_, c.g_, c.b_); }
void Mul(const Color3i& other_color);
void Mulf(float scale); // Input range is 0.0 -> 1.0
void Mul(uint8_t val) {
Mul(Color3i(val, val, val));
}
void Sub(const Color3i& color);
void Add(const Color3i& color);
uint8_t Get(int rgb_index) const;
void Set(int rgb_index, uint8_t val);
void Fill(uint8_t val) { Set(val, val, val); }
uint8_t MaxRGB() const {
uint8_t max_r_g = r_ > g_ ? r_ : g_;
return max_r_g > b_ ? max_r_g : b_;
}
template <typename PrintStream>
inline void Print(PrintStream* stream) const {
stream->print("RGB:\t");
stream->print(r_); stream->print(",\t");
stream->print(g_); stream->print(",\t");
stream->print(b_);
stream->print("\n");
}
void Interpolate(const Color3i& other_color, float t);
uint8_t* At(int rgb_index);
const uint8_t* At(int rgb_index) const;
uint8_t r_, g_, b_;
};
struct ColorHSV {
ColorHSV() : h_(0), s_(0), v_(0) {}
ColorHSV(float h, float s, float v) {
Set(h,s,v);
}
explicit ColorHSV(const Color3i& color) {
FromRGB(color);
}
ColorHSV& operator=(const Color3i& color) {
FromRGB(color);
return *this;
}
ColorHSV(const ColorHSV& other) {
Set(other);
}
void Set(const ColorHSV& other) {
Set(other.h_, other.s_, other.v_);
}
void Set(float h, float s, float v) {
h_ = h;
s_ = s;
v_ = v;
}
template <typename PrintStream>
inline void Print(PrintStream* stream) {
stream->print("HSV:\t");
stream->print(h_); stream->print(",\t");
stream->print(s_); stream->print(",\t");
stream->print(v_); stream->print("\n");
}
bool operator==(const ColorHSV& other) const {
return h_ == other.h_ && s_ == other.s_ && v_ == other.v_;
}
bool operator!=(const ColorHSV& other) const {
return !(*this == other);
}
void FromRGB(const Color3i& rgb);
Color3i ToRGB() const;
float h_, s_, v_;
};
#endif // COLOR_H_

View file

@ -0,0 +1,172 @@
#include <Arduino.h>
#include <stdint.h>
#include "./color_mapper.h"
#include "./color.h"
#include "./util.h"
// Serves as the pallet for selecting a color.
struct ColorScheme {
ColorScheme(const ColorHSV& c0,
const ColorHSV& c1,
const ColorHSV& c2,
const ColorHSV& c3,
const ColorHSV& c4,
const ColorHSV& c5,
const ColorHSV& c6,
const ColorHSV& c7,
const ColorHSV& c8,
const ColorHSV& c9,
const ColorHSV& c10,
const ColorHSV& c11) {
data[0] = c0;
data[1] = c1;
data[2] = c2;
data[3] = c3;
data[4] = c4;
data[5] = c5;
data[6] = c6;
data[7] = c7;
data[8] = c8;
data[9] = c9;
data[10] = c10;
data[11] = c11;
}
ColorHSV data[12];
};
const ColorScheme& SelectColorScheme(int indx) {
static ColorScheme color_schemes[] = {
// Coda
ColorScheme(
ColorHSV(Color3i(0xff, 0x00, 0x00)), // C
ColorHSV(Color3i(0x00, 0x80, 0xff)), // C
ColorHSV(Color3i(0xff, 0xff, 0x00)), // D
ColorHSV(Color3i(0x80, 0x00, 0xff)), // D#
ColorHSV(Color3i(0x00, 0xff, 0x00)), // E
ColorHSV(Color3i(0xff, 0x00, 0x80)), // F
ColorHSV(Color3i(0x00, 0xff, 0xff)), // F#
ColorHSV(Color3i(0xff, 0x80, 0x00)), // G
ColorHSV(Color3i(0x00, 0x00, 0xff)), // G#
ColorHSV(Color3i(0x80, 0xff, 0x00)), // A
ColorHSV(Color3i(0xff, 0x00, 0xff)), // A#
ColorHSV(Color3i(0x00, 0xff, 0x80))
),
// Frequency
ColorScheme(
ColorHSV(Color3i(0xfc, 0xff, 0x00)), // C
ColorHSV(Color3i(0x00, 0xff, 0x73)), // C#
ColorHSV(Color3i(0x00, 0xa7, 0xff)),
ColorHSV(Color3i(0x00, 0x20, 0xff)),
ColorHSV(Color3i(0x35, 0x00, 0xff)),
ColorHSV(Color3i(0x56, 0x00, 0xb6)),
ColorHSV(Color3i(0x4e, 0x00, 0x6c)),
ColorHSV(Color3i(0x9f, 0x00, 0x00)), // G
ColorHSV(Color3i(0xdb, 0x00, 0x00)),
ColorHSV(Color3i(0xff, 0x36, 0x00)), // A
ColorHSV(Color3i(0xff, 0xc1, 0x00)),
ColorHSV(Color3i(0xbf, 0xff, 0x00)) // B
),
// SCRIABIN
ColorScheme(
ColorHSV(Color3i(0xff, 0x00, 0x00)), // C
ColorHSV(Color3i(0x8f, 0x00, 0xff)), // C#
ColorHSV(Color3i(0xff, 0xff, 0x00)), // D
ColorHSV(Color3i(0x71, 0x63, 0x95)), // D#
ColorHSV(Color3i(0x4f, 0xa1, 0xc2)), // E
ColorHSV(Color3i(0xc1, 0x01, 0x01)), // F
ColorHSV(Color3i(0x00, 0x00, 0xff)), // F#
ColorHSV(Color3i(0xff, 0x66, 0x00)), // G
ColorHSV(Color3i(0x96, 0x00, 0xff)), // G#
ColorHSV(Color3i(0x00, 0xff, 0x00)), // A
ColorHSV(Color3i(0x71, 0x63, 0x95)), // A#
ColorHSV(Color3i(0x4f, 0xa1, 0xc2)) // B
),
// LUIS BERTRAND CASTEL
ColorScheme(
ColorHSV(Color3i(0x00, 0x00, 0xff)), // C
ColorHSV(Color3i(0x0d, 0x98, 0xba)), // C#
ColorHSV(Color3i(0x00, 0xff, 0x00)), // D
ColorHSV(Color3i(0x80, 0x80, 0x00)), // D#
ColorHSV(Color3i(0xff, 0xff, 0x00)), // E
ColorHSV(Color3i(0xff, 0xd7, 0x00)), // F
ColorHSV(Color3i(0xff, 0x5a, 0x00)), // F#
ColorHSV(Color3i(0xff, 0x00, 0x00)), // G
ColorHSV(Color3i(0xdc, 0x14, 0x3c)), // G#
ColorHSV(Color3i(0x8f, 0x00, 0xff)), // A
ColorHSV(Color3i(0x22, 0x00, 0xcd)), // A#
ColorHSV(Color3i(0x5a, 0x00, 0x95)) // B
),
// H VON HELMHOHOLTZ
ColorScheme(
ColorHSV(Color3i(0xff, 0xff, 0x06)), // C
ColorHSV(Color3i(0x00, 0xff, 0x00)), // C#
ColorHSV(Color3i(0x21, 0x9e, 0xbd)), // D
ColorHSV(Color3i(0x00, 0x80, 0xff)), // D#
ColorHSV(Color3i(0x6f, 0x00, 0xff)), // E
ColorHSV(Color3i(0x8f, 0x00, 0xff)), // F
ColorHSV(Color3i(0xff, 0x00, 0x00)), // F#
ColorHSV(Color3i(0xff, 0x20, 0x00)), // G
ColorHSV(Color3i(0xff, 0x38, 0x00)), // G#
ColorHSV(Color3i(0xff, 0x3f, 0x00)), // A
ColorHSV(Color3i(0xff, 0x3f, 0x34)), // A#
ColorHSV(Color3i(0xff, 0xa5, 0x00)) // B
),
// ZIEVERINK
ColorScheme(
ColorHSV(Color3i(0x9a, 0xcd, 0x32)), // C
ColorHSV(Color3i(0x00, 0xff, 0x00)), // C#
ColorHSV(Color3i(0x00, 0xdd, 0xdd)), // D
ColorHSV(Color3i(0x00, 0x00, 0xff)), // D#
ColorHSV(Color3i(0x6f, 0x00, 0xff)), // E
ColorHSV(Color3i(0x8f, 0x00, 0xff)), // F
ColorHSV(Color3i(0x7f, 0x1a, 0xe5)), // F#
ColorHSV(Color3i(0xbd, 0x00, 0x20)), // G
ColorHSV(Color3i(0xff, 0x00, 0x00)), // G#
ColorHSV(Color3i(0xff, 0x44, 0x00)), // A
ColorHSV(Color3i(0xff, 0xc4, 0x00)), // A#
ColorHSV(Color3i(0xff, 0xff, 0x00)) // B
),
// ROSICRUCIAN ORDER
ColorScheme(
ColorHSV(Color3i(0x9a, 0xcd, 0x32)), // C
ColorHSV(Color3i(0x00, 0xff, 0x00)), // C#
ColorHSV(Color3i(0x21, 0x9e, 0xbd)), // D
ColorHSV(Color3i(0x00, 0x00, 0xff)), // D#
ColorHSV(Color3i(0x8a, 0x2b, 0xe2)), // E
ColorHSV(Color3i(0x8b, 0x00, 0xff)), // F
ColorHSV(Color3i(0xf7, 0x53, 0x94)), // F#
ColorHSV(Color3i(0xbd, 0x00, 0x20)), // G
ColorHSV(Color3i(0xee, 0x20, 0x4d)), // G#
ColorHSV(Color3i(0xff, 0x3f, 0x34)), // A
ColorHSV(Color3i(0xff, 0xa5, 0x00)), // A#
ColorHSV(Color3i(0xff, 0xff, 0x00)) // B
),
};
static const int n = sizeof(color_schemes) / sizeof(color_schemes[0]);
indx = constrain(indx, 0, n - 1);
return color_schemes[indx];
};
const ColorHSV SelectColor(int midi_note, float brightness, int color_selector_val) {
const uint8_t fun_note = FundamentalNote(midi_note);
const ColorScheme& color_scheme = SelectColorScheme(color_selector_val);
ColorHSV color = color_scheme.data[fun_note];
color.v_ = brightness;
return color;
}

View file

@ -0,0 +1,10 @@
#ifndef COLOR_MAPPER_H_
#define COLOR_MAPPER_H_
#include "./color.h"
const ColorHSV SelectColor(int midi_note, float brightness, int color_selector_val);
#endif // COLOR_MAPPER_H_

View file

@ -0,0 +1,8 @@
#pragma once
#if defined(__AVR__) || defined(ARDUINO_ARCH_AVR) || defined(ARDUINO_ARCH_ESP8266) || defined(ARDUINO_ARCH_RP2040) || defined(ARDUINO_ARCH_RP2350) || defined(ARDUINO_ARCH_RP2040) || defined(ARDUINO_TEENSYLC)
#define ENABLE_SKETCH 0
#else
#define ENABLE_SKETCH 1
#endif

View file

@ -0,0 +1,5 @@
#include "dprint.h"
bool is_debugging = false;

View file

@ -0,0 +1,13 @@
#pragma once
extern bool is_debugging;
//#define ENABLE_DPRINT
#ifdef ENABLE_DPRINT
#define dprint(x) if (is_debugging) { Serial.print(x); }
#define dprintln(x) if (is_debugging) { Serial.println(x); }
#else
#define dprint(x)
#define dprintln(x)
#endif

View file

@ -0,0 +1,58 @@
#include <Arduino.h>
#include "./framebuffer.h"
#include "./color.h"
FrameBufferBase::FrameBufferBase(Color3i* array, int n_pixels)
: color_array_(array), n_color_array_(n_pixels) {}
FrameBufferBase::~FrameBufferBase() {}
void FrameBufferBase::Set(int i, const Color3i& c) {
color_array_[i] = c;
}
void FrameBufferBase::Set(int i, int length, const Color3i& color) {
for (int j = 0; j < length; ++j) {
Set(i + j, color);
}
}
void FrameBufferBase::FillColor(const Color3i& color) {
for (int i = 0; i < n_color_array_; ++i) {
color_array_[i] = color;
}
}
void FrameBufferBase::ApplyBlendSubtract(const Color3i& color) {
for (int i = 0; i < n_color_array_; ++i) {
color_array_[i].Sub(color);
}
}
void FrameBufferBase::ApplyBlendAdd(const Color3i& color) {
for (int i = 0; i < n_color_array_; ++i) {
color_array_[i].Add(color);
}
}
void FrameBufferBase::ApplyBlendMultiply(const Color3i& color) {
for (int i = 0; i < n_color_array_; ++i) {
color_array_[i].Mul(color);
}
}
Color3i* FrameBufferBase::GetIterator(int i) {
return color_array_ + i;
}
// Length in pixels.
int FrameBufferBase::length() const { return n_color_array_; }
FrameBuffer::FrameBuffer(int n_pixels)
: FrameBufferBase(static_cast<Color3i*>(malloc(sizeof(Color3i) * n_pixels)),
n_pixels) {
}
FrameBuffer::~FrameBuffer() {
free(color_array_);
color_array_ = NULL;
n_color_array_ = 0;
}

View file

@ -0,0 +1,35 @@
#ifndef FRAME_BUFFER_H_
#define FRAME_BUFFER_H_
struct Color3i;
class FrameBufferBase {
public:
FrameBufferBase(Color3i* array, int n_pixels);
virtual ~FrameBufferBase();
void Set(int i, const Color3i& c);
void Set(int i, int length, const Color3i& color);
void FillColor(const Color3i& color);
void ApplyBlendSubtract(const Color3i& color);
void ApplyBlendAdd(const Color3i& color);
void ApplyBlendMultiply(const Color3i& color);
Color3i* GetIterator(int i);
// Length in pixels.
int length() const;
protected:
Color3i* color_array_;
int n_color_array_;
};
class FrameBuffer : public FrameBufferBase {
public:
FrameBuffer(int n_pixels);
virtual ~FrameBuffer();
};
#endif // FRAME_BUFFER_H_

View file

@ -0,0 +1,205 @@
#include "./led_layout_array.h"
#include "./settings.h"
LedColumns LedCurtinArray() {
static const int kLedRepeatTable[] = {
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22,
22
};
const int* out = kLedRepeatTable;
const int size = sizeof(kLedRepeatTable) / sizeof(*kLedRepeatTable);
return LedColumns(out, size);
}
LedColumns LedLuminescentArray() {
/////////////////////////////////////////////////////////
// Repeat data for the LED piano.
static const int kLedRepeatTable[] = {
25,
25,
26,
26,
27,
27,
28,
27,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
28,
27,
28,
27,
27,
26,
26,
25,
25,
24,
24,
23,
23,
21,
20,
18,
17,
15,
14,
12,
11,
10,
10,
9,
9,
8,
8,
7,
7,
6,
6,
5,
6,
5,
5,
4,
5,
4,
4,
3,
4,
3,
3,
2,
2,
1
};
const int* out = kLedRepeatTable;
const int size = sizeof(kLedRepeatTable) / sizeof(*kLedRepeatTable);
return LedColumns(out, size);
}
LedColumns LedLayoutArray() {
if (kUseLedCurtin) {
return LedCurtinArray();
} else {
return LedLuminescentArray();
}
}

View file

@ -0,0 +1,14 @@
#ifndef LED_ARRAY_H_
#define LED_ARRAY_H_
struct LedColumns {
LedColumns(const int* a, int l) : array(a), length(l) {}
LedColumns(const LedColumns& other) : array(other.array), length(other.length) {}
const int* array;
int length;
};
LedColumns LedLayoutArray();
#endif // LED_ARRAY_H_

View file

@ -0,0 +1,33 @@
#ifndef LED_ROPE_INTERFACE_H_
#define LED_ROPE_INTERFACE_H_
#include "./color.h"
class LedRopeInterface {
public:
virtual ~LedRopeInterface() {}
virtual void Set(int i, const Color3i& c) = 0;
virtual void Set(int i, int length, const Color3i& color) {
for (int j = 0; j < length; ++j) {
Set(i + j, color);
}
}
virtual Color3i* GetIterator(int i) = 0;
virtual int length() const = 0;
virtual void DrawSequentialRepeat(int repeat) = 0;
virtual void DrawRepeat(const int* value_array, int array_length) = 0;
virtual void RawBeginDraw() = 0;
virtual void RawDrawPixel(const Color3i& c) = 0;
virtual void RawDrawPixels(const Color3i& c, int n) = 0;
virtual void RawDrawPixel(uint8_t r, uint8_t g, uint8_t b) = 0;
virtual void RawCommitDraw() = 0;
};
#endif // LED_ROPE_INTERFACE_H_

View file

@ -0,0 +1,26 @@
#ifndef CONSTAINTS_H_
#define CONSTAINTS_H_
enum {
kNumKeys = 88, // Don't change this. 88 keys on a keyboard.
kNumLightsPerNote = 20,
// Controls the speed of the light rope. Higher values result in
// slower draw time, however the data integrity increases.
kLightClockDivisor = 12,
kNewLightClockDivisor = 16,
// Led Curtain is a mode that we used on the bus. When this is
// zero it's assume that we are using the TCL led lighting.
kUseLedCurtin = 0,
kShowFps = 0, // If true then the fps is printed to the console.
// Coda's keyboard indicates that this is the value when the
// foot pedal is pressed. There is probably a more universal
// way of detecting this value that works with more keyboards.
kMidiFootPedal = 64,
};
#endif // CONSTAINTS_H_

View file

@ -0,0 +1,115 @@
#include <Arduino.h>
#include "./util.h"
#include "ApproximatingFunction.h"
#include "settings.h"
/*
// C - 0, C# - 1, D - 2, D# - 3... B - 11.
// http://cote.cc/w/wp-content/uploads/drupal/blog/logic-midi-note-numbers.png
*/
uint8_t FundamentalNote(int midi_note) {
return midi_note % 12;
}
float mapf(float x, float in_min, float in_max, float out_min, float out_max) {
return (x - in_min) * (out_max - out_min) / (in_max - in_min) + out_min;
}
// Given an input time.
float AttackRemapFactor(uint32_t delta_t_ms) {
typedef InterpData<uint32_t, float> Datum;
static const Datum kData[] = {
Datum(0, .5),
Datum(80, 1.0),
};
static const int n = sizeof(kData) / sizeof(kData[0]);
return Interp(delta_t_ms, kData, n);
}
float MapDecayTime(uint8_t key_idx) {
typedef InterpData<uint8_t, float> Datum;
static const float bias = 1.3f;
// key then time for decay in milliseconds.
// First value is the KEY on the keyboard, second value is the
// time. The KEY must be IN ORDER or else the algorithm will fail.
static const Datum kInterpData[] = {
Datum(0, 21.0f * 1000.0f * bias),
Datum(11, 19.4 * 1000.0f * bias),
Datum(22, 15.1f * 1000.0f * bias),
Datum(35, 12.5f * 1000.0f * bias),
Datum(44, 10.f * 1000.0f * bias),
Datum(50, 8.1f * 1000.0f * bias),
Datum(53, 5.3f * 1000.0f * bias),
Datum(61, 4.0f * 1000.0f * bias),
Datum(66, 5.0f * 1000.0f * bias),
Datum(69, 4.6f * 1000.0f * bias),
Datum(70, 4.4f * 1000.0f * bias),
Datum(71, 4.3f * 1000.0f * bias),
Datum(74, 3.9f * 1000.0f * bias),
Datum(80, 1.9f * 1000.0f * bias),
Datum(81, 1.8f * 1000.0f * bias),
Datum(82, 1.7f * 1000.0f * bias),
Datum(83, 1.5f * 1000.0f * bias),
Datum(84, 1.3f * 1000.0f * bias),
Datum(86, 1.0f * 1000.0f * bias),
Datum(87, 0.9f * 1000.0f * bias),
};
static const int n = sizeof(kInterpData) / sizeof(kInterpData[0]);
float approx_val = Interp(key_idx, kInterpData, n);
return approx_val;
}
// Returns a value in the range 1->0 indicating how intense the note is. This
// value will go to 0 as time progresses, and will be 1 when the note is first
// pressed.
float CalcDecayFactor(bool sustain_pedal_on,
bool key_on,
int key_idx,
float velocity,
bool dampened_key,
float time_elapsed_ms) {
static const float kDefaultDecayTime = .2f * 1000.f;
static const float kBias = 1.10;
float decay_time = kDefaultDecayTime; // default - no sustain.
if (key_on || sustain_pedal_on || !dampened_key) {
decay_time = MapDecayTime(key_idx) * max(0.25f, velocity);
}
// decay_interp is a value which starts off as 1.0 to signify the start of the
// key press and gradually decreases to 0.0. For example, if the decay time is 1 second
// then at the time = 0s, decay_interp is 1.0, and after one second decay_interp is 0.0
float intensity_factor = mapf(time_elapsed_ms,
0.0, decay_time * kBias,
1.0, 0.0); // Startup at full brightness -> no brighness.
// When decay_interp reaches 0, the lighting sequence is effectively finished. However
// because this is time based and time keeps on going this value will move into negative
// territory, we take care of this by simply clamping all negative values to 0.0.
intensity_factor = constrain(intensity_factor, 0.0f, 1.0f);
return intensity_factor;
}
float ToBrightness(int velocity) {
typedef InterpData<int, float> Datum;
static const Datum kData[] = {
Datum(0, 0.02),
Datum(32, 0.02),
Datum(64, 0.10),
Datum(80, 0.30),
Datum(90, 0.90),
Datum(100, 1.00),
Datum(120, 1.00),
Datum(127, 1.00)
};
static const int n = sizeof(kData) / sizeof(kData[0]);
const float val = Interp(velocity, kData, n);
return val;
}

View file

@ -0,0 +1,38 @@
#ifndef UTIL_H_
#define UTIL_H_
#include <stdint.h>
#include "./ApproximatingFunction.h"
#include "./settings.h"
#ifndef round
#define round(x) ((x)>=0?(long)((x)+0.5):(long)((x)-0.5))
#endif // round
/*
// C - 0, C# - 1, D - 2, D# - 3... B - 11.
// http://cote.cc/w/wp-content/uploads/drupal/blog/logic-midi-note-numbers.png
*/
uint8_t FundamentalNote(int midi_note);
float mapf(float x, float in_min, float in_max, float out_min, float out_max);
// Given an input time.
float AttackRemapFactor(uint32_t delta_t_ms);
float MapDecayTime(uint8_t key_idx);
// Returns a value in the range 1->0 indicating how intense the note is. This
// value will go to 0 as time progresses, and will be 1 when the note is first
// pressed.
float CalcDecayFactor(bool sustain_pedal_on,
bool key_on,
int key_idx,
float velocity,
bool dampened_key,
float time_elapsed_ms);
float ToBrightness(int velocity);
#endif // UTIL_H_